STAT 337

Design and Analysis of Experiments

Exercises

Editing by: Zahra Kaabi

Chapter 4

Randomized Complete Block Design

4.1. The ANOVA from a randomized complete block experiment output is shown below.

Source	DF	<u>s s</u>	MS	F	Ρ
Treatment	4	1010.56	(3) ?	29.84	? (6)
Block	(1) ?	(2) ?	64.765	(5) ?	? (7)
Error	20	169.33	(4) ?		
Total	29	1503.71			

- (a) Fill in the blanks. You may give bounds on the P-value.
- (b) How many blocks were used in this experiment?
- (c) What conclusions can you draw?
- (a) Given that a 1 = 4

And $(a-1)(b-1) = 20 \Rightarrow 4(b-1) = 20 \Rightarrow b-1 = 5$

Then (1) = b - 1 = 5

- Given that $MS_{Block} = 64.765$ And we know that $MS_{Block} = \frac{SS_{Block}}{b-1} \Rightarrow SS_{Block} = (b-1)MS_{Block}$

Then $(2) = SS_{Block} = (b - 1)MS_{Block} = (5)(64.765) = 323.825$

- (3) = MS_{Treatments} =
$$\frac{SS_{Treatments}}{a-1} = \frac{1010.56}{4} = 252.64$$

- (4) = MS_E =
$$\frac{SS_E}{(a-1)(b-1)} = \frac{169.33}{20} = 8.4665$$

- (5) =
$$F = \frac{\text{MS}_{\text{Block}}}{\text{MS}_{\text{E}}} = \frac{64.765}{8.4665} = 7.65$$

-
$$(6) = p - value = 0$$

How to calculate p-value:

p-value= $P(F > F_{statistic})$ where, $df_1 = 4$ and $df_2 = 20$ = P(F > 29.84)= 1 - P(F < 29.84)Minitab: P(F < 29.84)= **1** - 1 calc \rightarrow probability distribution \rightarrow F = 0 \rightarrow cumulative distribution \rightarrow Numerator degree of freedom = 4 Denominator degree of freedom = 20input constant=29.84 →ОК The answer = 1(7) = p - value = 0.0004p-value= $P(F > F_{statistic})$ where, $df_1 = 5$ and $df_2 = 20$ = P(F > 7.65)= 1 - P(F < 7.65)= **1** - 0.99963127 $= 0.000368721 \approx 0.0004$

- (b) the number of blocks = 6
- (C) Treatments: it's clear that p value = 0 < lpha = 0.05

Then we reject $H_0: \mu_1 = \mu_2 = \mu_3 = \mu_4 = \mu_5$

That means at least one of the means different to others, which means there is a different between the five different treatments in the result of the study

Blocks: it's clear that $p - value = 0.0004 < \alpha = 0.05$

Then we reject $H_0: \beta_1 = \beta_2 = \beta_3 = \beta_4 = \beta_5 = \beta_6$

That means at least one of the means different to others, which means there is a different between the six different Blocks in the result of the study.

4.4. Three different washing solutions are being compared to study their effectiveness in retarding bacteria growth in 5-gallon milk containers. The analysis is done in a laboratory, and only three trials can be run on any day. Because days could represent a potential source of variability, the experimenter decides to use a randomized block design. Observations are taken for four days, and the data are shown here. Analyze the data from this experiment (use $\alpha = 0.05$) and draw conclusions.

		Days			
Solution	1	2	3	4	Y _{<i>i</i>.}
1	13	22	18	39	92
2	16	24	17	44	101
3	5	4	1	22	32
Y. <i>j</i>	34	50	36	10	5 225

a= 3 b=4 N=12

$$SS_T = \sum_{i=1}^{a} \sum_{j=1}^{b} Y_{ij}^2 - \frac{Y_{..}^2}{N}$$

= 13² + 16² + 5² + 22² + ... + 1² + 22² - $\frac{225^2}{12}$ =1862.25

$$SS_{Treatment} = \frac{1}{b} \sum_{i=1}^{a} Y_{i.}^{2} - \frac{Y_{.}^{2}}{N}$$
$$= \frac{1}{4} (92^{2} + 101^{2} + 32^{2}) - \frac{225^{2}}{12} = 703.5$$

$$SS_{Block} = \frac{1}{a} \sum_{j=1}^{b} Y_{j}^{2} - \frac{Y_{..}^{2}}{N}$$
$$= \frac{1}{3} (34^{2} + 50^{2} + 36^{2} + 105^{2}) - \frac{225^{2}}{12} = 1106.92$$

$$SS_E = SS_T - SS_{Treatment} - SS_{Block}$$

= 1862.25 - 703.5 - 1106.9 = **51.83**

Source of Variation	Sum of Squares	Degrees of Freedom	Mean Square	F_0
Treatments	SS _{Treatments}	<i>a</i> – 1	$\frac{SS_{\text{Treatments}}}{a-1}$	$\frac{MS_{\text{Treatments}}}{MS_E}$
Blocks	SS _{Blocks}	b - 1	$\frac{SS_{\text{Blocks}}}{b-1}$	_
Error	SS_E	(a-1)(b-1)	$\frac{SS_E}{(a-1)(b-1)}$	
Total	SS_T	N-1		

Source of Variation	Sum of Squares	Degrees of Freedom	Mean Square	F_0
Treatments	703.5	2	351.75	40.72
Blocks	1106.9	3	368.97	
Error	51.83	6	8.64	
Total	1862.25	11		

We study here if there is a different between the Three different washing solutions in retarding bacteria growth in five-gallon milk containers.

(1) $H_0: \mu_1 = \mu_2 = \mu_3$ VS $H_1:$ at least one of the means different to others

(2) The test statistic $F_0 = \frac{MS_{treatment}}{MS_E} = \frac{351.75}{8.64} = 40.72$

(3) The Critical value = $F_{\alpha,a-1,((a-1)(b-1))} = F_{0.05,2,6} = 5.143$

(4) since $F_0 = 40.72 > 5.143 = F_{0.05,2,6}$ we reject $H_0: \mu_1 = \mu_2 = \mu_3$

That means there is a different between the three different washing solutions in retarding bacteria growth in five-gallon milk containers.

We will see if there is a different between the days in retarding bacteria growth in five-gallon milk containers.

- (1) $H_0: \beta_1 = \beta_2 = \beta_3 = \beta_4$ VS $H_1:$ at least one of the means different to others (2) The test statistic $F_0 = \frac{MS_{Block}}{MS_E} = \frac{368.97}{8.64} = 42.7$
- (3) The Critical value = $F_{\alpha,b-1,((a-1)(b-1))} = F_{0.05,3,6} = 4.75706$

(4) since $F_0 = 42.7 > 4.75706 = F_{0.05,3,6}$ we reject $H_0: \beta_1 = \beta_2 = \beta_3 = \beta_4$

That means there is a different between the days in retarding bacteria growth in five-gallon milk containers.

Using Minitab to Perform a RCBD

solution	day	obs
1	1	13
1	2	22
1	3	18
1	4	39
2	1	16
2	2	24
2	3	17
2	4	44
3	1	5
3	2	4
3	3	1
3	4	22

- Choose Stat > ANOVA > General Linear Model.
- In Response, enter. **Obs**
- In Model, enter Solution day
- Click OK

<u>The output</u>

General Linear Model: obs versus solution; day

Factor	Туре	Levels	Val	ues	5	
solution	fixed	3	1;	2;	3	
day	fixed	4	1;	2;	3;	4

Analysis of Variance for obs, using Adjusted SS for Tests

Source	DF	Seq SS	Adj SS	Adj MS	F	P
solution	2	703.50	703.50	351.75	40.72	0.000
day	3	1106.92	1106.92	368.97	42.71	0.000
Error	6	51.83	51.83	8.64		
Total	11	1862.25				

S = 2.93920 R-Sq = 97.22% R-Sq(adj) = 94.90%

Unusual Observations for obs

Obs obs Fit SE Fit Residual St Resid

9 5.0000 0.5833 2.0783 4.4167 2.13 R

R denotes an observation with a large standardized residual.

Extra exercise:

Estimate the missing value

	Treatment					
Rep	А	В	С	D	Y.j	
1	9	11	3	7	30	
2	8	13	(<i>x</i>)	10	(31)	
3	7	12	8	4	31	
Yi	24	36	11	21	92	

Here a=4 and b=3

$$x = \frac{ay'_{i.} + by'_{.j} - y'_{..}}{(a - 1)(b - 1)}$$
$$x = \frac{4(11) + 3(31) - 92}{(2)(3)} = 7.5$$

<u>HW 4.3</u>

The Latin Square Design

4.23. An industrial engineer is investigating the effect of four assembly methods (*A*, *B*, *C*, *D*) on the assembly time for a color television component. Four operators are selected for the study. Furthermore, the engineer knows that each assembly method produces such fatigue that the time required for the last assembly may be greater than the time required for the first, regardless of the method. That is, a trend develops in the required assembly time. To account for this source of variability, the engineer uses the Latin square design shown below. Analyze the data from this experiment ($\alpha = 0.05$) and draw appropriate conclusions.

Order of	Operator					
Assembly	1	2	3	4	Y _i	_
1	C = 10	<i>D</i> = 14	<i>A</i> = 7	B = 8	39	
2	B = 7	C = 18	D = 11	A = 8	44	
3	A = 5	B = 10	C = 11	D = 9	35	
4	D = 10	A = 10	B = 12	C = 14	46	
Yk	32	52	41	39	164	Y

N=16 and P=4

Latin letter	Α	В	С	D	TOTAL
Treatment total	Y .1.	Y _{.2.}	Y _{.3.}	Y .4.	Y
Ү . <i>j</i> .	30	37	53	44	164

$$SS_T = \sum_{i=1}^{P} \sum_{j=1}^{P} \sum_{K}^{P} Y_{ijK}^2 - \frac{Y_{..}^2}{N}$$
$$= 10^2 + 14^2 + 7^2 + 8^2 + \dots + 12^2 + 14^2 - \frac{164^2}{16} = 153$$

$$SS_{Treatment} = \frac{1}{P} \sum_{J=1}^{P} Y_{.j.}^{2} - \frac{Y_{..}^{2}}{N}$$
$$= \frac{1}{4} (30^{2} + 37^{2} + 53^{2} + 44^{2}) - \frac{164^{2}}{16} = 72.5$$

$$SS_{Rows} = \frac{1}{p} \sum_{i=1}^{p} Y_{i..}^{2} - \frac{Y_{..}^{2}}{N}$$
$$= \frac{1}{4} (39^{2} + 44^{2} + 35^{2} + 46^{2}) - \frac{164^{2}}{16} = 18.5$$

$$SS_{Columns} = \frac{1}{p} \sum_{k=1}^{p} Y_{..k}^{2} - \frac{Y_{..}^{2}}{N}$$
$$= \frac{1}{4} (32^{2} + 52^{2} + 41^{2} + 39^{2}) - \frac{164^{2}}{16} = 51.5$$

$$SS_E = SS_T - SS_{Treatment} - SS_{Rows} - SS_{Columns}$$

= 153 - 72.5 - 18.5 - 51.5 = **10**.5

Source of Variation	Sum of Squares	Degrees of Freedom	Mean Square	F_0
Treatments	$SS_{\text{Treatments}} = \frac{1}{P} \sum_{j=1}^{P} y_{j.}^{2} - \frac{y_{}^{2}}{N}$	p - 1	$\frac{SS_{\text{Treatments}}}{p-1}$	$F_0 = \frac{MS_{\text{Treatments}}}{MS_E}$
Rows	$SS_{Rows} = \frac{1}{p} \sum_{i=1}^{p} y_{i}^2 - \frac{y_{}^2}{N}$	p - 1	$\frac{SS_{\rm Rows}}{p-1}$	
Columns	$SS_{Columns} = \frac{1}{p} \sum_{k=1}^{p} y_{k}^2 - \frac{y_{}^2}{N}$	p - 1	$\frac{SS_{\text{Columns}}}{p-1}$	
Error	SS_E (by subtraction)	(p-2)(p-1)	$\frac{SS_E}{(p-2)(p-1)}$	
Total	$SS_T = \sum_i \sum_j \sum_k y_{ijk}^2 - \frac{y_{}^2}{N}$	$p^2 - 1$		

Analysis of Variance for the Latin Square Design

Analysis of Variance for the Latin Square Design

Source of Variation	Sum of Squares	Degrees of Freedom	Mean Square	F_0
Treatments	72.5	3	24.17	13.81
Rows	18.5	3	6.17	
Columns	51.5	3	17.17	
Error	10.5	6	1.75	
Total	153	15		

(1) $H_0: \mu_{T_1} = \mu_{T_2} = \mu_{T_3} = \mu_{T_4}$ VS $H_1:$ at least one of the means different to others

(2) The test statistic $F_0 = \frac{MS_{treatment}}{MS_E} = \frac{24.17}{1.75} = 13.81$

- (3) The Critical value = $F_{\alpha,P-1,(P-1)(P-2)} = F_{0.05,3,6} = 4.76$
- (4) since $F_0 = 13.81 > 4.76 = F_{0.05,3,6}$ we reject $H_0: \mu_{T_1} = \mu_{T_2} = \mu_{T_3} = \mu_{T_4}$

That means there is a different between the four assembly methods (*A*, *B*, *C*, *D*) on the assembly time for a color television component.

Using Minitab to Perform the Latin Square Design

order of			
assembly	operator	position	obs
1	1	С	10
1	2	D	14
1	3	А	7
1	4	В	8
2	1	В	7
2	2	С	18
2	3	D	11
2	4	А	8
3	1	А	5
3	2	В	10
3	3	С	11
3	4	D	9
4	1	D	10
4	2	А	10
4	3	В	12
4	4	С	14

- Choose Stat > ANOVA > General Linear Model > Fit General Linear Model.
- In Response, enter. Obs
- In Model, enter order of assembly, operator, position
- Click OK

Zahra Kaabi

General Linear Model: obs versus order of assembly; operator; position

Method

Factor coding (-1; 0; +1)

Factor Information

Factor		Туре	Levels	Va	lue	S	
order of	assembly	Random	4	1;	2;	3;	4
operator		Random	4	1;	2;	3;	4
position		Fixed	4	A;	в;	С;	D

 $H_0: \mu_{T_1} = \mu_{T_2} = \mu_{T_3} = \mu_{T_4}$ VS

 H_1 : at least one of the means different to others means Since p-value = 0.004< 0.05 = α

⇒ We reject $H_0: \mu_{T_1} = \mu_{T_2} = \mu_{T_3} = \mu_{T_4}$, That means there is a different between the four assembly methods (*A*, *B*, *C*, *D*) on the assembly time for a color television component.

Analysis of Variance

Source	DF	Adj SS	Adj MS	F-Value	P-Value
order of assembly	3	18.50	6.167	3.52	0.089
operator	3	51.50	17.167	9.81	0.010
position	3	72.50	24.167	<mark>13.81</mark>	0.004
Error	6	10.50	1.750		
Total	15	153.00			

Model Summary

S	R-sq	R-sq(adj)	R-sq(pred)
1.32288	93.14%	82.84%	51.20%

Coefficients

+
*
*
~
*
*
*
*
*
.50
.50
.50

Regression Equation

obs = 10.250 - 0.500 order of assembly_1 + 0.750 order of assembly_2 - 1.500 order of assembly_3 + 1.250 order of assembly_4 - 2.250 operator_1 + 2.750 operator_2 + 0.000 operator_3 - 0.500 operator_4 - 2.750 position_A - 1.000 position_B + 3.000 position_C + 0.750 position_D

Equation treats random terms as though they are fixed.

Expected Mean Squares, using Adjusted SS

Zahra Kaabi

		Expected Mean Square
	Source	for Each Term
1	order of assembly	(4) + 4.0000 (1)
2	operator	(4) + 4.0000 (2)
3	position	(4) + Q[3]
4	Error	(4)

Error Terms for Tests, using Adjusted SS

				Synthesis
	Source	Error DF	Error MS	of Error MS
1	order of assembly	6.00	1.7500	(4)
2	operator	6.00	1.7500	(4)
3	position	6.00	1.7500	(4)

Variance Components, using Adjusted SS

Source	Variance	% of Total	StDev	% of Total
order of assembly	1.10417	16.46%	1.05079	40.57%
operator	3.85417	57.45%	1.96320	75.80%
Error	1.75	26.09%	1.32288	51.08%
Total	6.70833		2.59005	

<u>HW : 4.22</u>

Balanced Incomplete Block Designs (BIBD)

4.40 An engineer is studying the mileage performance characteristics of five types of gasoline additives. In the road test he wishes to use cars as blocks; however, because of a time constraint, he must use an incomplete block design. He runs the balanced design with the five blocks that follow. Analyze the data from this experiment (use $\Box \alpha = .05$) and draw conclusions.

			Car			
Additive	1	2	3	4	5	y _{i.}
1		17	14	13	12	56
2	14	14		13	10	51
3	12		13	12	9	46
4	13	11	11	12		47
5	11	12	10		8	41
У.ј	50	54	48	50	39	<i>y</i> = 241

$$SS_T = \sum_{i=1}^{a} \sum_{j=1}^{b} Y_{ij}^2 - \frac{Y_{..}^2}{N}$$

= 17² + 14² + 13² + 12² + ... + 10² + 8² - $\frac{241^2}{20}$ = 2981 - $\frac{241^2}{20}$ = 76.95

Zahra Kaabi

$$SS_{Block} = \frac{1}{k} \sum_{j=1}^{b} Y_{j}^{2} - \frac{Y_{..}^{2}}{N}$$
$$= \frac{1}{4} (50^{2} + 54^{2} + 48^{2} + 50^{2} + 39^{2}) - \frac{241^{2}}{20} = 31.2$$

$$SS_{Treatment(adjusted)} = \frac{k \sum_{i=1}^{a} Q_i^2}{\lambda a}$$

$$\lambda = \frac{r(k-1)}{a-1} = \frac{4(4-1)}{5-1} = 3$$

$$Q_{i} = y_{i.} - \sum_{j=1}^{b} n_{ij}y_{j} \quad i = 1, 2, ..., a$$

$$Q_{1} = 56 - \frac{1}{4}(54 + 48 + 50 + 39) = 33/4 = 8.25$$

$$Q_{2} = 51 - \frac{1}{4}(50 + 54 + 50 + 39) = 11/4 = 2.75$$

$$Q_{3} = 46 - \frac{1}{4}(50 + 48 + 50 + 39) = -3/4 = -0.75$$

$$Q_{4} = 47 - \frac{1}{4}(50 + 54 + 48 + 50) = -7/2 = -3.5$$

$$Q_{5} = 41 - \frac{1}{4}(50 + 54 + 48 + 39) = -\frac{27}{4} = -6.75$$

Then,

$$SS_{Treatment(adjusted)} = \frac{k \sum_{i=1}^{a} Q_i^2}{\lambda a} = 536/15 = 35.73$$

$$SS_E = SS_T - SS_{Treatment(adjusted)} - SS_{Block}$$

= 76.95 - 35.73 - 31.2 = 10.02

$$SS_{Treatment} = \frac{1}{r} \sum_{i=1}^{a} Y_{i.}^{2} - \frac{Y_{..}^{2}}{N}$$
$$= \frac{1}{4} (56^{2} + 51^{2} + 46^{2} + 47^{2} + 41^{2}) - \frac{241^{2}}{20} = 31.7$$

$$SS_{Block(adjusted)} = \frac{r \sum_{j=1}^{b} Q'_{j}^{2}}{\lambda b}$$
$$\lambda = \frac{r(k-1)}{a-1} = \frac{4(4-1)}{5-1} = 3$$

$$Q'_{i} = y_{j} - \sum_{i=1}^{a} n_{ij}y_{i} \quad i = 1, 2, ..., a$$

$$Q'_{1} = 50 - \frac{1}{4}(51 + 46 + 47 + 41) = 15/4 = 3.75$$

$$Q'_{2} = 54 - \frac{1}{4}(56 + 51 + 47 + 41) = 21/4 = 5.25$$

$$Q'_{3} = 48 - \frac{1}{4}(56 + 46 + 47 + 41) = \frac{1}{2} = 0.5$$

$$Q'_{4} = 50 - \frac{1}{4}(56 + 51 + 46 + 47) = 0$$

$$Q'_{5} = 39 - \frac{1}{4}(56 + 51 + 46 + 41) = -19/2 = -9.5$$

then,

 $SS_{Block(adjusted)} = \frac{r\sum_{j=1}^{b}Q'_{j}^{2}}{\lambda b}$ = 35.23

$SS_E = SS_T - SS_{Treatment} - SS_{Block(adjusted)}$

= 76.95 - 31.7 - 35.23 = 10.02

Source of Variation	Sum of Squares	Degrees of Freedom	Mean Square	F_0
Treatments (adjusted) Blocks	$\frac{k\sum Q_i^2}{\lambda a}$ $\frac{1}{k}\sum y_{ij}^2 - \frac{y_{ii}^2}{N}$	a - 1 b - 1	$\frac{SS_{\text{Treatments}(adjusted)}}{a-1}$ $\frac{\frac{SS_{\text{Blocks}}}{b-1}}{b-1}$	$F_0 = rac{MS_{\mathrm{Treatments}(\mathrm{adjusted})}}{MS_E}$
Error	SS_E (by subtraction)	N-a-b+1	$rac{SS_E}{N-a-b+1}$	
Total	$\sum \sum y_{ij}^2 - rac{y_*^2}{N}$	N-1		

a full and the state of the sta	Analysis of	Variance for	the Balanced	Incomplete	Block Design
--	-------------	--------------	--------------	------------	--------------

Source of	Sum of	Degrees of	Mean	F ₀	p-value
Variation	Squares	Freedom	Square		
Treatments (adjusted)	35.73	4	8.9325	9.81	0.001
Treatments (unadjusted)	31.7	4			
Blocks (unadjusted)	31.2	4			
Blocks (adjusted)	35.23	4	8.8075	9.67	0.001
Error	10.02	11	0.9109		
Total	76.95	21			

We study here if there is a different between the five types of gasoline (treatments) on the road test

(1) $H_0: \mu_{T_1} = \mu_{T_2} = \mu_{T_3} = \mu_{T_4} = \mu_{T_5}$ VS $H_1:$ at least one of the means different to others

(2) The test statistic $F_0 = \frac{MS_{treatment((adjusted))}}{MS_E} = \frac{8.9333}{0.9109} = 9.81$

(3) The Critical value = $F_{\alpha,a-1,N-a-b+1} = F_{0.05,4,11} = 3.357$

(4) since $F_0 = 9.81 > 3.357 = F_{0.05,4,11}$ we reject $H_0: \mu_{T_1} = \mu_{T_2} = \mu_{T_3} = \mu_{T_4} = \mu_{T_5}$ That means there is a different between the five types of gasoline on the road test.

We study here if there is a different between the five types of cars (Blocks) on the road test (1) $H_0: \beta_1 = \beta_2 = \beta_3 = \beta_4 = \beta_5$ VS $H_1:$ at least one of the means different to

others

(2) The test statistic $F_0 = \frac{MS_{Block((adjusted))}}{MS_E} = \frac{8.8075}{0.9109} = 9.67$

(3) The Critical value = $F_{\alpha,b-1,-a-b+1} = F_{0.05,4,11} = 3.357$

(4) since $F_0 = 9.67 > 3.357 = F_{0.05,4,11}$ we reject $H_0: \beta_1 = \beta_2 = \beta_3 = \beta_4 = \beta_5$ That means there is a different between the five types of cars on the road test

Additive	Car	obs
1	2	17
1	3	14
1	4	13
1	5	12
2	1	14
2	2	14
2	4	13

Using Minitab to Perform a RCBD

2	5	10
3	1	12
3	3	13
3	4	12
3	5	9
4	1	13
4	2	11
4	3	11
4	4	12
5	1	11
5	2	12
5	3	10
5	5	8

- Choose Stat > ANOVA > General Linear Model.
- In Response, enter. **Obs**
- In Model, enter Additive Car
- Click OK

The output

Factor Information

Factor	Туре	Levels	Val	lues	3		
Additive	Fixed	5	1;	2;	3;	4;	5
Car	Fixed	5	1;	2;	3;	4;	5

Analysis of Variance

Source	DF	Adj SS	Adj MS	F-Value	P-Value
Additive	4	35.73	8.9333	<mark>9.81</mark>	0.001
Car	4	35.23	8.8083	<mark>9.67</mark>	<mark>0.001</mark>
Error	11	10.02	0.9106		
Total	19	76.95			

Model Summary

S	R-sq	R-sq(adj)	R-sq(pred)
0.954257	86.98%	77.52%	56.97%

Coefficients

Term	Coef	SE Coef	T-Value	P-Value	VIF
Constant	12.050	0.213	56.47	0.000	
Additive					
1	2.200	0.441	4.99	0.000	1.71
2	0.733	0.441	1.66	0.124	1.71
3	-0.200	0.441	-0.45	0.659	1.71
4	-0.933	0.441	-2.12	0.058	1.71
Car					

1	1.000	0.441	2.27	0.044	1.71
2	1.400	0.441	3.18	0.009	1.71
3	0.133	0.441	0.30	0.768	1.71
4	0.000	0.441	0.00	1.000	1.71

Regression Equation

obs = 12.050 + 2.200 Additive_1 + 0.733 Additive_2 - 0.200 Additive_3 - 0.933 Additive_4 - 1.800 Additive_5 + 1.000 Car_1 + 1.400 Car_2 + 0.133 Car_3 + 0.000 Car_4 - 2.533 Car_5

Fits and Diagnostics for Unusual Observations

Obs	obs	Fit	Resid	Std Resid	
14	11.000	12.517	-1.517	-2.14	R

R Large residual

Nonparametric Methods in the Analysis of Variance

The Kruskal–Wallis Test

Example 3.12 page:129

EXAMPLE 3.12

The data from Example 3.1 and their corresponding ranks are shown in Table 3.20. There are ties, so we use Equation 3.67 as the test statistic. From Equation 3.67

$$S^2 = \frac{1}{19} \left[2869.50 - \frac{20(21)^2}{4} \right] = 34.97$$

and the test statistic is

$$H = \frac{1}{S^2} \left[\sum_{i=1}^{a} \frac{R_{i.}^2}{n_i} - \frac{N(N+1)^2}{4} \right]$$

= $\frac{1}{34.97} [2796.30 - 2205]$
= 16.91

TABLE 3.20

Data and Ranks for the Plasma Etching Experiment in Example 3.1

	Power						
1	60	1	80	2	00	2	20
y _{1j}	R _{1j}	<i>y</i> _{2j}	R _{2j}	y _{3j}	R_{3j}	y_{4j}	R_{4j}
575	6	565	4	600	10	725	20
542	3	593	9	651	15	700	17
530	1	590	8	610	11.5	715	19
539	2	579	7	637	14	685	16
570	5	610	11.5	629	13	710	18
R _{i.}	17		39.5		63.5		90

Because $H > \chi^2_{0.01,3} = 11.34$, we would reject the null hypothesis and conclude that the treatments differ. (The P- value for H = 16.91 is $P = 7.38 \times 10^{-4}$.) This is the same conclusion as given by the usual analysis of variance F test.

power	Obs
160	575
160	542
160	530
160	539
160	570
180	565
180	593
180	590
180	579
180	610
200	600
200	651
200	610
200	637
200	629
220	725
220	700
220	715
220	685
220	710

To Perform a Kruskal-Wallis

- Click <u>Analyze > Nonparametric Tests > Legacy Dialogs > K</u> Independent Samples.
- In Response, enter **obs**
- In factors, enter **power**

Kruskal-Wallis Test: obs versus power Descriptive Statistics

power	Ν	Median	Mean Rank	Z-Value
160	5	542	3.4	-3.10
180	5	590	7.9	-1.13
200	5	629	12.7	0.96
220	5	710	18.0	3.27
Overall	20		10.5	

Test

Null hypothesis	<mark>H₀</mark>	<mark>: All media</mark>	ins are equa	al
Alternative hypothesis	H ₁	<mark>: At least o</mark>	ne median	<mark>is different</mark>
Method	DF	H-Value	P-Value	
Not adjusted for ties	3	16.89	0.001	
Adjusted for ties	3	<mark>16.91</mark>	<mark>0.001</mark>	

3.51. Use the Kruskal – Wallis test for the experiment in Problem 3.23.
3.23. The effective life of insulating fluids at an accelerated load of 35 kV is being studied. Test data have been obtained for four types of fluids. The results from a completely randomized experiment were as follows:

Fluid		Type Life (in h) at 35 kV Load								
1	17.6	18.9	16.3	17.4	20.1	21.6				
2	16.9	15.3	18.6	17.1	19.5	20.3				
3	21.4	23.6	19.4	18.5	20.5	22.3				
4	19.3	21.1	16.9	17.5	18.3	19.8				

Fluid								
1		2		3		4		
<i>Y</i> _{1<i>j</i>}	R_{1j}	Y _{2j}	R_{2j}	Y _{3j}	R_{3j}	Y_{4j}	R_{4j}	
17.6	8	16.9	3.5	21.4	21	19.3	13	
18.9	12	15.3	1	23.6	24	21.1	20	
16.3	2	18.6	11	19.4	14	16.9	3.5	
17.4	6	17.1	5	18.5	10	17.5	7	
20.1	17	19.5	15	20.5	19	18.3	9	
21.6	22	20.3	18	22.3	23	19.8	16	
R _{<i>i</i>.}	67		53.5		111		68.5	

 $N=24 a=4 n_i = 6 i=1,2,3,4$

There is a ties then we will use

$$S^{2} = \frac{1}{N-1} \left[\sum_{i=1}^{a} \sum_{j=1}^{n_{i}} R_{ij}^{2} - \frac{N(N+1)^{2}}{4} \right]$$

$$S^{2} = \frac{1}{24 - 1} \left[4899.5 - \frac{24(24 + 1)^{2}}{4} \right] = 49.978$$
$$H = \frac{1}{S^{2}} \left[\sum_{i=1}^{a} \frac{R_{i.}^{2}}{n_{i}} - \frac{N(N + 1)^{2}}{4} \right]$$

$$H = \frac{1}{49.978} \left[4060.75 - \frac{24(24+1)^2}{4} \right] = 6.218$$

If

$$H > \chi^2_{\alpha,a-1}$$

Then we reject the null hypothesis

$$\chi^2_{0.05,3} = 7.8147$$

since $H = 6.218 < 7.8147 = \chi^2_{0.05,3}$ we cannot reject the null hypothesis then there is no difference between the four types of fluids

Fluid		Obs
	1	17.6
	1	18.9
	1	16.3
	1	17.4
	1	20.1
	1	21.6
	2	16.9
	2	15.3
	2	18.6
	2	17.1
	2	19.5

2	20.3
3	21.4
3	23.6
3	19.4
3	18.5
3	20.5
3	22.3
4	19.3
4	21.1
4	16.9
4	17.5
4	18.3
4	19.8

Kruskal-Wallis Test: observation versus fluid Descriptive Statistics

Fluid	Ν	Median	Mean Rank	Z-Value
1	6	18.25	11.2	-0.53
2	6	17.85	8.9	-1.43
3	6	20.95	18.5	2.40
4	6	18.80	11.4	-0.43
Overall	24		12.5	

Test

Null hypothesis	<mark>H₀</mark>	: All media	ins are equa	al
Alternative hypothesis	H ₁	<mark>: At least o</mark>	ne median	<mark>is different</mark>
Method	DF	H-Value	P-Value	
Not adjusted for ties	3	6.21	0.102	
Adjusted for ties	3	<mark>6.22</mark>	<mark>0.101</mark>	

Or since p-value= $0.101 > 0.05 = \alpha$ then we cannot reject H₀: All medians are equal then there is no difference between the four types of fluids

HW: Use the Kruskal – Wallis test for the experiment in Problem 3.13.

3.13: A rental car company wants to investigate whether the type of car rented affects the length of the rental period. An experiment is run for one week at a particular location, and 10 rental contracts are selected at random for each car type. The results are shown in the following table.

Type of Car	Observations									
Subcompact	3	5	3	7	6	5	3	2	1	6
Compact	1	3	4	7	5	6	3	2	1	7
Midsize	4	1	3	5	7	1	2	4	2	7
Full size	3	5	7	5	10	3	4	7	2	7

(a) Is there evidence to support a claim that the type of car rented affects the length of the rental contract? Use $\alpha = 0.05$

Type of car	Observations
subcompact	3
subcompact	5
subcompact	3
subcompact	7
subcompact	6
subcompact	5
subcompact	3
subcompact	2
subcompact	1
subcompact	6
compact	1
compact	3
compact	4
compact	7
compact	5
compact	6
compact	3

Γ	a=4	
	n=10	
	N=40	

compact	2
compact	1
compact	7
midsize	4
midsize	1
midsize	3
midsize	5
midsize	7
midsize	1
midsize	2
midsize	4
midsize	2
midsize	7
fullsize	3
fullsize	5
fullsize	7
fullsize	5
fullsize	10
fullsize	3
fullsize	4
fullsize	7
fullsize	2
fullsize	7

Kruskal-Wallis Test: Observations versus Type of car Descriptive Statistics

Type of car	Ν	Median	Mean Ra	nk Z	-Value		
compact	10	3.5	19	9.0	-0.47		
fullsize	10	5.0	2	5.5	1.56		
midsize	10	3.5	17	7.4	-0.97		
subcompact	10	4.0	20	0.1	-0.12		
Overall	40		20	0.5			
Test							
Null hypothesis H ₀ : All medians are equal							
Alternative hy	/pothe	esis H ₁ :	At least or	ne me	<mark>dian is d</mark> i	ifferent	
Method		DF	H-Value	P-Val	ue		
Not adjusted	for tie	es 3	2.71	0.4	39		

Zahra Kaabi