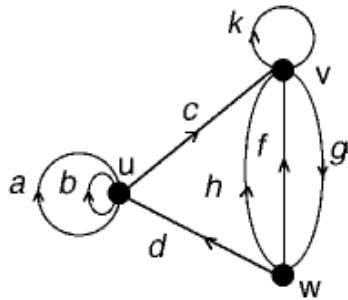


Exercises 3 – chapter 1+2

chapter 1:

Directed graphs (or digraphs) :

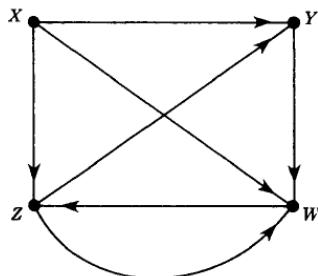
Q1: Find the **indegrees** and **outdegrees** of a digraph .



Solution:

Vertex	u	v	w
Indegree	3	4	1
Outdegree	3	2	3

Q2 : Let G be the directed graph:



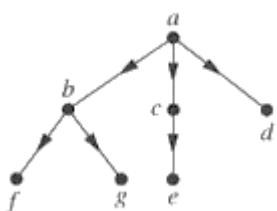
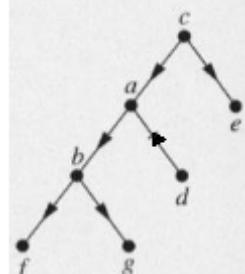
Find all simple paths from **X** to **Z**.

Solution:

There are three simple paths from X to Z, which are :

$(X \rightarrow Z)$, $(X \rightarrow W \rightarrow Z)$, and $(X \rightarrow Y \rightarrow W \rightarrow Z)$.

Q3: Which of these graphs are rooted tree

Graphs	Type
	<input checked="" type="checkbox"/> Rooted tree (with root a) <input type="checkbox"/> Not Rooted tree
	<input type="checkbox"/> Rooted tree <input checked="" type="checkbox"/> Not Rooted tree

Graph isomorphism:

Ex. 1.27: show whether the following two graphs **G** and **H** are isomorphic.

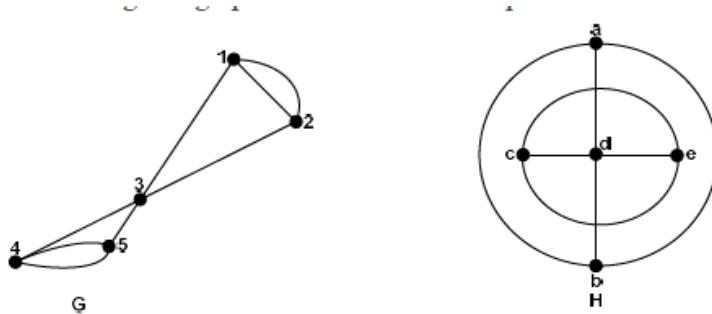


Figure 1.77: Two isomorphic graphs.

Solution:

The adjacent matrices for the two graphs are,

$$A_G = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 1 & 0 & 1 & 1 & 0 \\ 2 & 1 & 0 & 1 & 0 \\ 3 & 1 & 1 & 0 & 1 \\ 4 & 0 & 0 & 1 & 0 \\ 5 & 0 & 0 & 1 & 1 \end{pmatrix}, \quad A_H = \begin{pmatrix} a & b & c & d & e \\ a & 0 & 1 & 0 & 1 & 0 \\ b & 1 & 0 & 0 & 1 & 0 \\ c & 0 & 0 & 0 & 1 & 1 \\ d & 1 & 1 & 1 & 0 & 1 \\ e & 0 & 0 & 1 & 1 & 0 \end{pmatrix}$$

We observe that transposing rows 3 and 4 and also transposing columns 3 and 4 transforms the matrix A_G into matrix A_H .

$$A_G = \begin{matrix} 1 \\ 2 \\ 4 \\ 3 \\ 5 \end{matrix} \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 0 & 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 1 \\ 1 & 1 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 & 0 \end{pmatrix}$$

$$A_G = \begin{matrix} 1 \\ 2 \\ 4 \\ 3 \\ 5 \end{matrix} \begin{pmatrix} 1 & 2 & 4 & 3 & 5 \\ 0 & 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 \\ 1 & 1 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 & 0 \end{pmatrix}$$

So the bijection map becomes as follows.

$$A_G = \begin{matrix} 1 \\ 2 \\ 4 \\ 3 \\ 5 \end{matrix} \begin{pmatrix} 1 & 2 & 4 & 3 & 5 \\ 0 & 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 \\ 1 & 1 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 & 0 \end{pmatrix}$$

$$A_H = \begin{matrix} a \\ b \\ c \\ d \\ e \end{matrix} \begin{pmatrix} a & b & c & d & e \\ 0 & 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 \\ 1 & 1 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 & 0 \end{pmatrix}$$

$$f(1) = a, f(2) = b, f(3) = d, f(4) = c \text{ and } f(5) = e$$

Hence the two graphs are isomorphic.

* The same bijection map can be obtained by transposing rows c and d and also transposing columns c and d transforms the matrix A_H into matrix A_G .

However the drawings of the above two graphs look quite different but they are isomorphic.

chapter 2 :

Shortest path algorithms

Ex. 2.5: Find the shortest path from vertex u to vertex w for the following network using pruning algorithm. And draw the rooted tree from the vertex u .

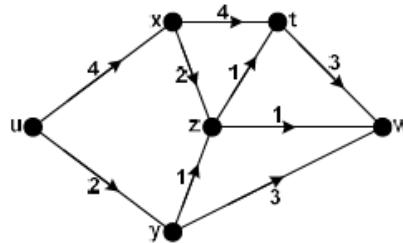


Figure 2.13: A weighted directed cycle-free graph.

Solution: using pruning algorithm:

From u : let $d(u) = 0$, $p(u) = u$, $[d(v)=\infty \text{ and } p(v)=\Phi ; v \neq u]$
 $d(x) = d(u) + 4 = 0+4=4$, $p(x) = ux$,
 $d(y) = d(u) + 2 = 0+2=2$, $p(y) = uy$,

From x : let $d(x) = 4$, $p(x)=ux$
 $d(t) = d(x) + 4 = 4+4 = 8$, $p(t) = p(x) t = uxt$
 $d(z) = d(x) + 2 = 4+2 = 6$, $p(z) = p(x) z = uxz$

From y : let $d(y) = 2$, $p(y)=uy$
 $d(z) = d(y) + 1 = 2+1 = 3$, $p(z) = p(y) t = uyz$
 $d(w) = d(y) + 3 = 2+3 = 5$, $p(w) = p(y) z = uyw$

From z : let $d(z) = 3$, $p(z)=uyz$ (note: uyz is shortest bath then uxz)
 $d(t) = d(z) + 1 = 3+1 = 4$, $p(t) = p(z) t = uyzt$
 $d(w) = d(z) + 1 = 3+1 = 4$, $p(w) = p(z) w = uyzw$

From t : let $d(t) = 4$, $p(t) = uyzt$ (note: $uyzt$ is shortest bath the uxt)
 $d(w) = d(t) + 3 = 4+3 = 7$, $p(w) = p(t) w = uyztw$

$p(w)$ to read:

$d(w) = 4$ and $p(w) = uyzw$.

Since $d(w)$ has been determined, then the algorithm is finished and thus the shortest path from u to w is $p(w) = uyzw$ and $d(w) = 4$.

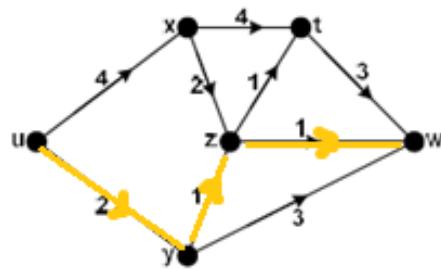


Figure 2.2: The shortest path from u to w for the graph 2.13.

Draw the rooted tree :

One can solve the above example by drawing the rooted tree from u as follows.

