

## Exercises 2 -ch1

Ex. 1.13: Find the weight of the minimal spanning tree for the following network.

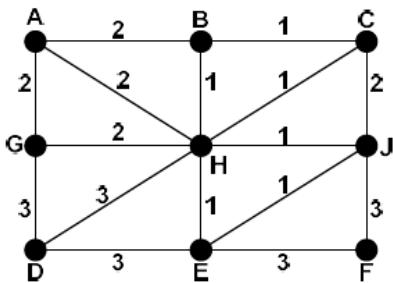


Figure 1.47: A connected graph.

### Solutions:

We have weighted connected undirected graph with  $G = (V, E)$ ,  $|V| = n = 9$ , so the spanning tree must have only  $n-1 = 8$  edges.

By use Nearest Neighbour Algorithm (NNA).

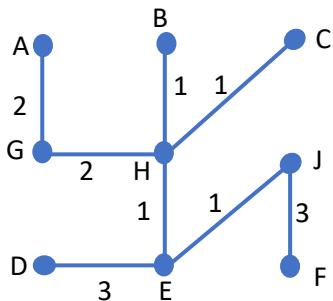
| Edges     | weights  | delete     | Edges     | weights  | delete     |
|-----------|----------|------------|-----------|----------|------------|
| <b>DH</b> | <b>3</b> | <b>yes</b> | <b>HG</b> | <b>2</b> | <b>no</b>  |
| <b>DG</b> | <b>3</b> | <b>yes</b> | <b>GA</b> | <b>2</b> | <b>no</b>  |
| <b>DE</b> | <b>3</b> | <b>no</b>  | <b>BC</b> | <b>1</b> | <b>yes</b> |
| <b>EF</b> | <b>3</b> | <b>yes</b> | <b>BH</b> | <b>1</b> | <b>no</b>  |
| <b>FJ</b> | <b>3</b> | <b>no</b>  | <b>HC</b> | <b>1</b> | <b>no</b>  |
| <b>JC</b> | <b>2</b> | <b>yes</b> | <b>HJ</b> | <b>1</b> | <b>yes</b> |
| <b>BA</b> | <b>2</b> | <b>yes</b> | <b>HE</b> | <b>1</b> | <b>no</b>  |
| <b>AH</b> | <b>2</b> | <b>yes</b> | <b>EJ</b> | <b>1</b> | <b>no</b>  |

Step 1: Arrange the edges of  $G$  in the order of decreasing weights.

Step 2: Proceeding sequentially, deletes each edge that does not disconnect the graph until  $n - 1$  edges remain.

Step 3: Exit.

According to NNA the weight of the minimal spanning tree is **14** and is given by,



By use Brute-Force method (BFM).

It is difficult to solve manually....

Ex. 1.16: Find the weight of the minimal spanning tree for the following network.

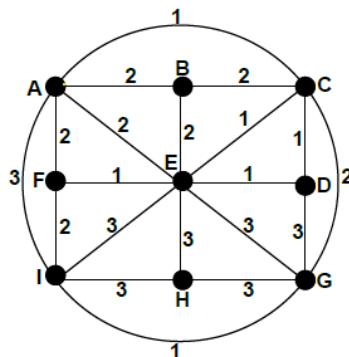


Figure 1.53: A connected graph.

**Solutions:**

We have weighted connected undirected graph with  $G = (V, E)$ ,  $|V| = 9$ , so the spanning tree must have only  $n-1= 8$  edges.

By use Kruskal's Algorithm.

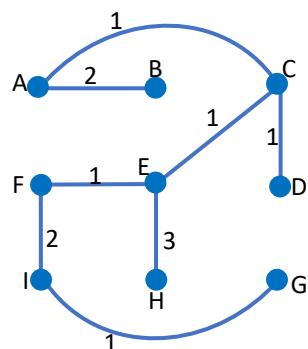
| i  | Edges | weights | Add | i  | Edges | weights | Add |
|----|-------|---------|-----|----|-------|---------|-----|
| 1  | AC    | 1       | yes | 11 | BC    | 2       | no  |
| 2  | CE    | 1       | yes | 12 | BE    | 2       | no  |
| 3  | CD    | 1       | yes | 13 | CG    | 2       | no  |
| 4  | DE    | 1       | no  | 14 | AI    | 3       | no  |
| 5  | EF    | 1       | yes | 15 | IE    | 3       | no  |
| 6  | GI    | 1       | yes | 16 | EH    | 3       | yes |
| 7  | AB    | 2       | yes | 17 | HI    | 3       | no  |
| 8  | AE    | 2       | no  | 18 | HG    | 3       | no  |
| 9  | AF    | 2       | no  | 19 | GE    | 3       | no  |
| 10 | FI    | 2       | yes | 20 | GD    | 3       | no  |

Step 1: Arrange the edges of  $G$  in order of increasing weights.

Step 2: Starting only with the vertices of  $G$  and proceeding sequentially, add each edge which does not result in a cycle until  $n - 1$  edges are added.

Step 3: Exit.

The minimal spanning tree has weight **12** and is given by,



By use Prim's Algorithm.

Let us select the start vertex  $A$ .

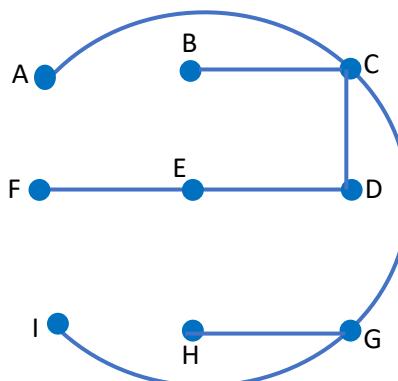
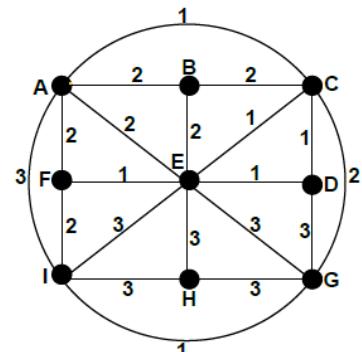
Step 1: Select an arbitrary vertex from the graph  $G$  and add it to a tree  $T$ .

Step 2: Consider the weights of each edge connecting to the vertices in  $T$  and select the minimum.

Step 3: Repeat step 2 until  $n - 1$  edges are added to the tree  $T$ .

#### Step 4: Exit.

| Iteration    | Tree                | Minimum edge       | Minimum weight |
|--------------|---------------------|--------------------|----------------|
| 0            | {A}                 | AC                 | 1              |
| 1            | {A,C}               | CD or CE           | 1              |
| 2            | { A,C,D}            | DE or CE           | 1              |
| 3            | {A,C,D,E}           | EF                 | 1              |
| 4            | {A,C,D,E,F}         | CG,FI,CB,EB, or AB | 2              |
| 5            | {A,C,D,E,F,G}       | GI                 | 1              |
| 6            | {A,C,D,E,F,G,I}     | CB,AB, or EB       | 2              |
| 7            | {A,C,D,E,F,G,I,B}   | GH,IH, or EH       | 3              |
| <b>Total</b> | {A,C,D,E,F,G,I,B,H} | ---                | <b>12</b>      |



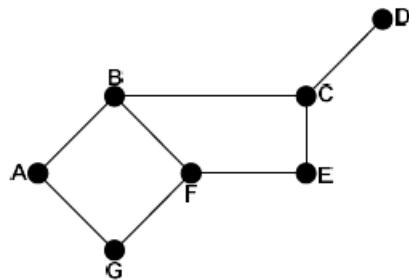
By use Boruvka's Algorithm.

| Component | Closest weight edge | Weight |
|-----------|---------------------|--------|
| {A}       | AC                  | 1      |
| {B}       | BE (or BC or BA)    | 2      |
| {C}       | CD (or CE or CA)    | 1      |
| {D}       | DE (or DC)          | 1      |
| {E}       | EF (or ED)          | 1      |
| {F}       | FI                  | 2      |
| {G}       | GI                  | 1      |
| {H}       | HE (or HG or HI)    | 3      |
| {I}       | --                  | --     |



The minimal spanning tree has weight **12**.

Ex. 1.18: Find **BFS** spanning tree of the following graph. Start at vertex A.



**Solutions:**

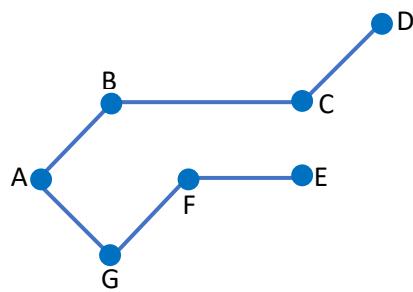
We have connected undirected graph with  $G = (V, E)$ ,  $|V| = 7$ , so the spanning tree must have only  $n-1 = 6$  edges.

Start at vertex A.

| Starting vertex | Adjacent vertices (not visited yet) | Visited vertex | FIFO-queue |
|-----------------|-------------------------------------|----------------|------------|
| A               | B, G                                | A              | B, G       |
| B               | F, C                                | B              | G, F, C    |
| G               | F                                   | G              | F, C       |
| F               | E                                   | F              | C, E       |
| C               | D, E                                | C              | E, D       |
| E               | -                                   | E              | D          |
| D               | -                                   | D              | -          |

BFS algorithmic steps:  
Step 1: Start at some vertex.  
Mark it as a visited vertex.  
Step 2: Search on all adjacent vertices to the visited vertex.  
Add the non-visited adjacent vertices in the FIFO queue.  
Step 3: Pull out the first non-visited vertex from the FIFO-queue and traverse to it.  
Step 4: Go back to step 1 till all vertices are visited.

So the order by which the vertices are visited is A, B, G, F, C, E and D. Then the spanning tree becomes,



Ex. 1.21: Find **DFS** tree of the following graph. Start at vertex A.

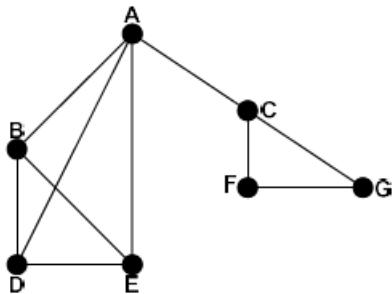


Figure 1.63: A connected graph.

**Solutions:**

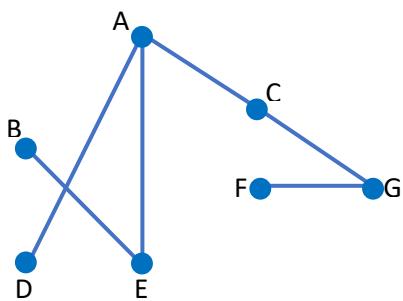
We have connected undirected graph with  $G = (V, E)$ ,  $|V| = 7$ , so the spanning tree must have only  $n-1= 6$  edges.

Start at vertex A.

| Starting vertex | Adjacent vertices (not visited yet) | Visited vertex | LIFO-stack |
|-----------------|-------------------------------------|----------------|------------|
| A               | B,E,D,C                             | A              | B,E,D,C    |
| C               | F,G                                 | C              | B,E,D,F,G  |
| G               | F                                   | G              | B,E,D,F    |
| F               | -                                   | F              | B,E,D      |
| D               | E,B                                 | D              | B,E        |
| E               | B                                   | E              | B          |
| B               | -                                   | B              | -          |

DFS algorithmic steps:  
Step 1: Start at some vertex.  
Mark it as a visited vertex.  
Step 2: Search on all adjacent vertices to the visited vertex.  
Add the non-visited adjacent vertices in the LIFO stack.  
Step 3: Select the top vertex in the LIFO-stack and traverse to it.  
Step 4: Go back to step 1 till all vertices are visited.

So the order by which the vertices are visited is A,C,G,F,D,E and B. Then the spanning tree becomes,



## H.W

Ex. 1.14: Find the weight of the minimal spanning tree for the following network.

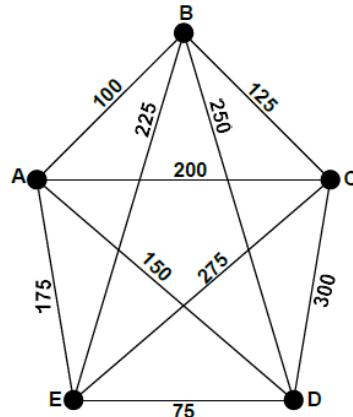


Figure 1.49: A connected graph.

Ex. 1.15: Find the weight of the minimal spanning tree for the following network.

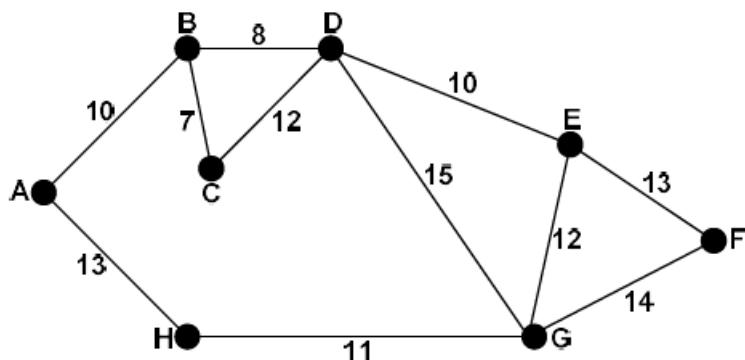


Figure 1.51: A connected graph.

Ex. 1.19: Find **BFS** spanning tree of the following graph. Start at vertex A.

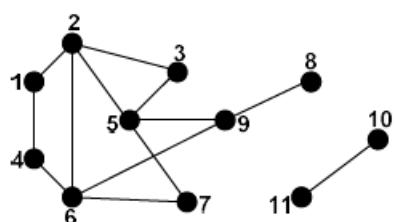


Figure 1.60: A disconnected graph.