Math 204 Differential Equations

Exercises 1
First Order Differential Equations

Ibraheem Alolyan

King Saud University

First Order Differential Equations (Exercises)

- Initial Value Problem (Existence and Uniquenence)
- Separable Equations
- 3 Equations with Homogeneous Coefficients
- Appropriate Substitution
- 5 Exact Equations

Initial Value Problem (Existence and Uniquenence)

Existence of a unique solution

Theorem

Consider a first order differential equation

$$\frac{dy}{dx} = f(x, y)$$

with initial condition

$$y(x_0) = y_0$$

Let R be a rectangular region defined by $a \le x \le b, c \le y \le d$ that contains the point (x_0, y_0) in its interior.

If f and $\frac{\partial f}{\partial y}$ are continuous on R then there exists an interval I centered at x_0 and a unique function y(x) satisfies the IVP.

Example

**a Determine the local region in the xy- plane for which the following differential equation has a unique solution through the origin (0,0).

$$\sqrt{9-y^2}\,\frac{dy}{dx} = \ln(4-x^2)$$

^aExam Problem

Example

**a Determine the local region in the xy- plane for which the following differential equation has a unique solution through the origin (0,0).

$$\sqrt{9-y^2}\,\frac{dy}{dx} = \ln(4-x^2)$$

^aExam Problem

$$R = \{(x, y) : -2 < x < 2, -3 < y < 3\}$$

Example

* Find and sketch the local region in the xy- plane for which the following initial value differential equation has a unique solution

$$(x^2 - x - 2) \frac{dy}{dx} = \sqrt{1 - \ln(2 - y)}$$

 $y(0) = 0$

Example

* Find and sketch the local region in the xy- plane for which the following initial value differential equation has a unique solution

$$(x^2 - x - 2) \frac{dy}{dx} = \sqrt{1 - \ln(2 - y)}$$

 $y(0) = 0$

$$R = \{(x,y): -1 < x < 2, 2-e < y < 2\}$$

Example

* Find and sketch the local region in the xy- plane for which the following initial value differential equation has a unique solution

$$\sqrt{x - y^2} dx - (2x^2 - 5x + 2) dy = 0$$
$$y(1) = 0$$

Example

* Find and sketch the local region in the xy- plane for which the following initial value differential equation has a unique solution

$$\sqrt{x - y^2} \, dx - (2x^2 - 5x + 2) \, dy = 0$$
$$y(1) = 0$$

$$R = \{(x,y) : \frac{1}{2} < x < 2, y^2 < x\}$$

Exam Problems

Determine and sketch the largest local region for which the following initial value problems admits a unique solution

$$\begin{cases} \ln\left(x-2\right) \frac{dy}{dx} = \sqrt{y-2} \\ y\left(\frac{5}{2}\right) = 4 \end{cases}$$

$$\begin{cases} \left(x^2 - 1\right) dy + \left(3 + y + \sqrt{y - 4x}\right) dx = 0 \\ y\left(0\right) = 2 \end{cases}$$

$$\begin{cases} (x-3) \frac{dy}{dx} + y \ln x = 2x \\ y(1) = 2 \end{cases}$$

$$\begin{cases} \left(x-2\right)\left(x+3\right)\frac{dy}{dx} = 4\ln y \\ y\left(-5\right) = 2 \end{cases}$$

Separable Equations

Separable equations

Definition

Consider a first-order differential equation of the form

$$M(x,y)dx + N(x,y)dy = 0$$

If we can write it in the form

$$g(x)dx = h(y)dy$$

then it is said to be separable.

To solve separable equations, we integrate each part

$$\int g(x)dx = \int h(y)dy + c$$

Separable equations

Example

* Solve the initial value problem

$$(xy^2 + 4x)dx + (8y - 2x^2y)dy = 0,$$
 $|x| < 2$
 $y(0) = 0$

| Ibraheem Alolyan | Differential Equations | Math - KSU | 11/48

Separable equations

Example

* Solve the initial value problem

$$(xy^2+4x)dx+(8y-2x^2y)dy=0, \qquad |x|<2$$

$$y(0)=0$$

$$y^2 = 2\sqrt{4 - x^2} - 4$$

12 / 48

Definition

A differential equation

$$M(x,y) dx + N(x,y) dy = 0$$

is an equation with homogeneous coefficients if both M(x,y) and N(x,y) are homogeneous functions of the same degree.

Definition

A differential equation

$$M(x,y) dx + N(x,y) dy = 0$$

is an equation with homogeneous coefficients if both M(x,y) and N(x,y) are homogeneous functions of the same degree.

Use the substitution

$$y = ux$$
 or $x = vy$

to reduce it to a separable differential equation.

◆ロト ◆昼 ト ◆ 差 ト ◆ 差 ・ か へ (*)

Example

Solve the initial value problem

$$xy^{2}\frac{dy}{dx} = y^{3} - x^{3}, \qquad xy \neq 0$$
$$y(1) = 2$$

Example

Solve the initial value problem

$$xy^{2}\frac{dy}{dx} = y^{3} - x^{3}, \qquad xy \neq 0$$
$$y(1) = 2$$

$$\left(\frac{y}{x}\right)^3 + \ln|x^3| = 8$$

Appropriate Substitution

Appropriate Substitution

If we have a differential equation of the form

$$\frac{dy}{dx} = f(ax + by)$$

we use the substitution

$$u = ax + by$$

then

$$\frac{du}{dx} = a + b\frac{dy}{dx}$$

Equations with linear coefficients

Consider the differential equation

$$(a_1x + b_1y + c_1)dx + (a_2x + b_2y + c_2)dy = 0$$

where a_1,b_1,c_1,a_2,b_2,c_2 are real constants.

The two lines $a_1x+b_1y+c_1=0$, and $a_2x+b_2y+c_2=0$ are parallel, or intersected.

17 / 48

Ibraheem Alolyan Differential Equations Math - KSU

Appropriate Substitutions

Example

* Solve the DE

$$\frac{dy}{dx} = \frac{1 - x - y}{x + y}$$

Appropriate Substitutions

Example

* Solve the DE

$$\frac{dy}{dx} = \frac{1 - x - y}{x + y}$$

$$(x+y)^2 = 2x + c$$

Definition

A differential equation of the form

$$M(x,y)dx + N(x,y)dy = 0$$

is called exact, if there is a function f(x,y) such that

$$df(x,y) = M(x,y)dx + N(x,y)dy = 0$$

Ibraheem Alolyan

Theorem

If $M,N,\frac{\partial M}{\partial y}$, and $\frac{\partial N}{\partial x}$ are continuous on a region R in xy-plane, then the differential equation

$$M(x,y)dx + N(x,y)dy = 0$$

is exact if and only if

$$\frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}$$

Example

Solve the problem

$$(e^x + y)dx + (2 + x + ye^y)dy = 0$$

Example

Solve the problem

$$(e^x + y)dx + (2 + x + ye^y)dy = 0$$

$$2y + xy + ye^y - e^y + e^x = c$$

Integrating factor

In order to find the integrating factor, we have tow cases

$$\ \, \mathbf{0} \ \, \boldsymbol{\mu} = \boldsymbol{\mu}(\boldsymbol{x}) \text{, then}$$

$$\mu(x) = e^{\int \frac{M_y - N_x}{N} dx}$$

$$2 \ \mu = \mu(y) \text{, then}$$

$$\mu(y) = e^{\int \frac{N_x - M_y}{M} dy}$$

Integrating factor

Example

* Verify that the differential equation

$$\cos x \, dx + \left(2 + \frac{3}{y}\right) \sin x \, dy = 0$$
$$0 < x < \pi, \quad y > 0$$

is not exact. Find a suitable integrating factor to convert it to an exact equation, and solve it.

Integrating factor

Example

* Verify that the differential equation

$$\cos x \, dx + \left(2 + \frac{3}{y}\right) \sin x \, dy = 0$$
$$0 < x < \pi, \quad y > 0$$

is not exact. Find a suitable integrating factor to convert it to an exact equation, and solve it.

$$2y + 3\ln y + \ln\sin x = c$$

Separable, Homogenous, Exact, Special Substitution

Example

* Solve

$$(y-2\sqrt{xy})dx+xdy=0, \qquad x>0, y>0$$

Ibraheem Alolyan Differential Equations Math - KSU 25 / 48

Separable, Homogenous, Exact, Special Substitution

Example

* Solve

$$(y-2\sqrt{xy})dx+xdy=0, \qquad x>0, y>0$$

$$\sqrt{xy} = x + c$$

Ibraheem Alolyan

Separable, Homogenous, Exact, Special Substitution

Example

* By using an appropriate substitution find the general solution of

$$\frac{dy}{dx} = \frac{y}{x}\ln(xy), \qquad x > 0, y > 0$$

26 / 48

Ibraheem Alolyan Differential Equations Math - KSU

Example

* By using an appropriate substitution find the general solution of

$$\frac{dy}{dx} = \frac{y}{x}\ln(xy), \qquad x > 0, y > 0$$

Solution:

$$u = xy$$

$$\ln|\ln(xy) + 1| = \ln x + c$$

Example

Solve

$$\frac{dy}{dx} = (4x + y + 5)^2$$

27 / 48

Example

Solve

$$\frac{dy}{dx} = (4x + y + 5)^2$$

Solution:

$$\frac{1}{2}\tan^{-1}\left(\frac{4x+y+5}{2}\right) = x+c$$

Ibraheem Alolyan Differential Equations Math - KSU 27 / 48

Example

Solve

$$(2xy + 2xy \ln y) dx + (2 + \ln y)(5 - x^2) dy = 0$$

Ibraheem Alolyan Differential Equations Math - KSU 28 / 48

Example

Solve

$$(2xy + 2xy \ln y) dx + (2 + \ln y)(5 - x^2) dy = 0$$

$$y(1 + \ln y) = c|5 - x^2|$$

Ibraheem Alolyan Differential Equations Math - KSU 28 / 48

Example

* Solve

$$\frac{dy}{dx} = 1 + \frac{1}{x} + \frac{1}{y} + \frac{1}{xy}, \qquad x > 0, \ y > 0$$

$$y(1) = 1$$

29 / 48

Ibraheem Alolyan Differential Equations Math - KSU

Example

* Solve

$$\frac{dy}{dx} = 1 + \frac{1}{x} + \frac{1}{y} + \frac{1}{xy}, \qquad x > 0, \ y > 0$$
$$y(1) = 1$$

$$y - \ln(1+y) = x + \ln x - \ln 2$$

Example

Solve

$$(y-xy)dy-(x+y^2)dx=0, \qquad x>1$$

Ibraheem Alolyan Differential Equations Math - KSU 30 / 48

Example

Solve

$$\tan y - x \frac{dy}{dx} - 4x^2 \tan y = 0, \qquad x > 0, y \in (0, \pi)$$

Ibraheem Alolyan Differential Equations Math - KSU 31/48

Example

Solve the problem

$$(6x + y^2)dx + y(2x - 3y)dy = 0$$

Example

Solve

$$y' = 3 - \sqrt{x + y - 1}$$
$$y(0) = 1$$

Example

Solve

$$\frac{dy}{dx} = \frac{xy + 3x - y - 3}{xy - 2x + 4y - 8}$$

34 / 48

Ibraheem Alolyan Differential Equations Math - KSU

Example

Solve

$$\frac{dy}{dx} = xy + \sqrt{x}\sqrt{y} + x\sqrt{y} + y\sqrt{x}, \qquad x > 0, y > 0$$

Ibraheem Alolyan Differential Equations Math - KSU 35 / 48

Example

Solve

$$(x + ye^{\frac{y}{x}})dx - xe^{\frac{y}{x}}dy = 0,$$
$$y(1) = 0$$

Example

Solve

$$(x + ye^{\frac{y}{x}})dx - xe^{\frac{y}{x}}dy = 0,$$
$$y(1) = 0$$

Solution

$$\sqrt{xy} = x + c$$

Example

Solve

$$y' = \frac{(y - 2x + 1)^2}{y - 2x}$$

Ibraheem Alolyan Differential Equations Math - KSU 37 / 48

Example

Find the value of k so that the given differential equation is exact :

$$(y^3 + kxy^4 - 2x)dx + (3xy^2 + 20x^2y^3)dy = 0$$

Ibraheem Alolyan Differential Equations Math - KSU 38 / 48

Example

Solve

$$y' = 2xy^2 + 3y^2 - 8x - 12$$
$$y(0) = -1$$

39 / 48

Ibraheem Alolyan Differential Equations Math - KSU

Example

Solve the given differential equation by finding an appropriate integrating factor :

$$(y^2 + xy^3) dx + (5y^2 - xy + y^3 \sin y) dy = 0, \qquad xy \neq 0$$

Ibraheem Alolyan Differential Equations Math - KSU 40 / 48

Separable Equations

In Problems 1 - 5 , solve the given differential equation by separation of variables.

2 *
$$(xy + x) dx + (x^2y^2 + x^2 + y^2 + 1) dy = 0$$

3 *
$$\frac{dy}{dx} = \frac{\sin x + x \cos x}{y(2\ln y + 1)}, y > 0$$

Separable Equations

Solve the initial value problem

$$\begin{cases} y \, dy = 4x \left(y^2 + 1\right)^{1/2} \\ y \left(0\right) = 1 \end{cases}$$

Solve the initial value problem

$$\begin{cases} \left(xy^2 + 4x \right) \, dx + \left(8y - 2x^2y \right) \, dy = 0 \, , \mid x \mid < 2 \\ y(0) = 0 \end{cases}$$

Solve the initial value problem

$$\begin{cases} \frac{dy}{dx}=1+\frac{1}{x}+\frac{1}{y}+\frac{1}{xy} &,\quad y\neq 0, x\neq 0\\ y(1)=1 \end{cases}$$

Equations with Homogeneous Coefficients

In Problems 1 - 5 ,solve the given differential equation

$$(x-y) dx + x dy = 0$$

$$y' = \frac{y+x}{x}$$

$$(y^2 + yx) dx - x^2 dy = 0$$

$$y' = \frac{2xy}{x^2 - y^2}$$

Equations with Homogeneous Coefficients

Find the general solution of the differential equation

$$x\frac{dy}{dx} - y = \sqrt{x^2 + y^2}; x > 0$$

Solve the initial value problem

$$\begin{cases} (x-y)dx + (3x+y)dy = 0\\ y(3) = -2 \end{cases}$$

Find the general solution of the differential equation

$$(y - 2\sqrt{xy})dx + xdy = 0, x > 0, y > 0.$$

Solving Some Differential Equations by Using Appropriate Substitutions

In Problems 1 - 4 ,solve the given differential equation by using appropriate substitutions.

$$\frac{dy}{dx} = (x+y+1)^2.$$

45 / 48

Ibraheem Alolyan Differential Equations Math - KSU

Solving Some Differential Equations by Using Appropriate Substitutions

Obtain the general solution of the differential equation

$$(2x+y)\frac{dy}{dx} - 1 - (2x+y)^2 = 0, \quad 2x+y \neq 0$$

* By using an appropriate substitution, or any other method, find the general solution of the differential equation

$$\frac{dy}{dx} = \frac{y}{x} \ln(xy) , x > 0, y > 0$$

Exact Equations

In Problems 1 -2 ,determine whether the given differential equation is exact. If it is exact, solve it.

$$2xy \, dx + (1+x^2) \, dy = 0$$

$$y' = \frac{2 + ye^{xy}}{2y - xe^{xy}}$$

- $(\cos y + y \cos x)dx + (\sin x x \sin y)dy = 0$
- Solve the initial value problem

$$\left\{ \begin{array}{l} \left(6xy + 2y^2 - 5\right)dx + \left(3x^2 + 4xy - 6\right)dy = 0 \\ y(1) = 1 \end{array} \right.$$

* Find the general solution of the differential equation

$$(x + y^2 + \sin^{-1} y) dx + \left(2xy + \frac{x}{\sqrt{1 - y^2}}\right) dy = 0.$$

Ibraheem Alolvan Differential Equations Math - KSU 47 /48

Integrating Factor

solve the differential equation

$$(2y^2 + 3x) dx + 2xydy = 0, \quad x > 0$$

solve the differential equation

$$y' = 2xy - x$$

 $\ \ \, \ \ \, \ \ \,$ Find m and n such that, $\mu(x,y)=x^my^n$ will be an integrating factor for the differential equation

$$(5xy^2 - 2y) dx + (3x^2y - x) dy = 0$$

Then solve the differential equation.

Ibraheem Alolyan