OPER 441: Modeling and Simulation Exercises Sheet #2

Question1:

Customers arrive to a gas station with two pumps. Each pump can reasonably accommodate a total of two cars. If all the space for the cars is full, potential customers will balk (leave without getting gas).

- 1. What measures of performance will be useful in evaluating the effectiveness of the gas station?
- 2. Describe how you would collect the inter-arrival and service times of the customers necessary to simulate this system.

Question2:

Classify the systems as either being discrete or continuous:

- a) Electrical Capacitor (You are interested in modeling the amount of current in a capacitor at any time t).
- b) On-line gaming system. (You are interested in modeling the number of people playing Halo 4 at any time t.)
- c) An airport. (You are interested in modeling the percentage of flights that depart late on any given day).
- d) Parking lot
- e) Level of gas in Fayetteville shale deposit
- f) Printed circuit board manufacturing facility
- g) Elevator system (You are interested in modeling the number of people waiting on each floor and traveling within the elevators.)
- h) Judicial system (You are interested in modeling the number of cases waiting for trial.)
- i) The in-air flight path of an airplane as it moves from an origin to a destination.

Question3:

The general goals of a simulation study often include:

(a). ______ of system alternatives and their performance measures across various factors (decision variables) with respect to some objectives.

(b). ______ of system behavior at some future point in time.

(c) The sequence of random numbers generated from a given seed is called a random number is called ______

(d) State three major methods of generating random variables from any distribution

Question4:

True or *False* Verification of the simulation model is performed to determine whether the simulation model adequately represents the real system.

OR 441: Simulation and Modeling Tutorial Handout #2: Introduction to Simulation

<u>Q.1</u>

Define

- 1. Manufacturing system (TV manufacture)
- 2. Transportation system (Train System)
- 3. Health-Care system (a Clinic)
- 4. Service system (Call Center)

a. For each of the system find:

- 1. System Inputs
- 2. System Components/Elements
- 3. System Outputs
- 4. System Environment/ Boundary

b. Find the state, entity, the attributes of the entities?

<u>Q.2:</u>

Consider a two-line customer service call center

- If line is idle, any new call is accepted
- If line is busy, any new call is lost

aall#	Arrival	Service	aall #	Arrival	Service	aall #	Arrival	Service
call#	time	time	call #	time	time	call #	time	time
1	2	3	11	29	1	21	54	5
2	3	8	12	30	3	22	55	2
3	4	3	13	31	4	23	57	5
4	5	3	14	32	2	24	58	3
5	10	3	15	33	4	25	59	6
6	14	2	16	36	13	26	60	2
7	17	1	17	38	4	27	61	3
8	18	4	18	43	1	28	63	2
9	20	1	19	48	1	29	65	1
10	23	3	20	50	3	30	66	2

Do the discrete-event simulation and Complete the details of the calls center and compute:

- 1. Define the events of the system
- 2. The lost calls probability
- 3. Percentage of time <u>line-1</u> is busy
- 4. Average arrival rate
- 5. Average service time

<u>Q.3:</u>

Consider a parking lot with three parking spaces:

- If a space is available, any new car is accepted
- If all paces are full, any new car is lost

	Arrival	Parking		
car #	time	time		
1	2.00	4.00		
2	5.00	5.00		
3	13.00	2.00		
4	17.00	4.00		
5	18.00	2.00		
6	19.00	6.00		
7	21.00	11.00		
8	23.00	3.00		
9	28.00	12.00		
10	31.00	2.00		
11	33.00	8.00		
12	35.00	2.00		
13	37.00	2.00		
14	39.00	13.00		
15	40.00	4.00		
16	42.00	4.00		
17	46.00	11.00		
18	48.00	12.00		
19	50.00	12.00		
20	51.00	6.00		

Do the discrete-event simulation and Complete the details of the parking lot:

- 1. Define the events of the system
- 2. The lost cars probability
- 3. Average arrival rate
- 4. Average parking time
- 5. Probability empty parking (No one in the parking)