Note: +S: slack variable, -S: surplus variable, *URS*: unresticted,

Q1: Put the following LP in the standard form:

1- Max
$$Z = X_1 - X_2 - 3X_3$$

Subject to

$$2X_1 + X_2 - X_3 \le 2$$

$$X_1 - 3X_2 + 2X_3 \le 3$$

$$X_1 + X_2 - X_3 \ge -2$$
 *(-1)

$$X_1 \ge 0, X_2 \le 0, X_3 URS$$

The standard form

Replace X_2 with $(-X_2^-)$, and Replace X_3 with $(X_3^+ - X_3^-)$

$$\operatorname{Max} Z = X_1 + X_2^- - 3X_3^+ + 3X_3^-$$

Subject to:

$$2X_1 - X_2^- - X_3^+ + X_3^- + S_1 = 2$$

$$X_1 + 3X_2^- + 2X_3^+ - 2X_3^- + S_2 = 3$$

$$-X_1+X_2^-+X_3^+-X_3^-+S_3=2$$

$$X_1, X_2^-, X_3^+, X_3^-, S_1, S_2, S_3 \ge 0$$

2- Min
$$Z = 80X_1 + X_2$$

Subject to

$$0.2X_1 + 0.32X_2 \le 0.25$$

$$X_1 + X_2 = 1$$

$$X_1 \ge 0, X_2 \ge 0$$

$$Min \mathbf{Z} = 80X_1 + X_2$$

Subject to

$$0.2X_1 + 0.32X_2 + S_1 = 0.25$$

$$X_1 + X_2 = 1$$

$$X_1, X_2, S_1 \ge 0$$

3- Min
$$Z = 3X_1 + 8X_2 + 4X_3$$

Subject to

$$X_1 + X_2 \ge 8$$

$$2X_1 - 3X_2 \le 0$$

$$X_2 \geq 9$$

$$X_1 \ge 0, X_2 \ge 0, X_3 URS$$

Replace X_3 with $(X_3^+ - X_3^-)$

The standard form

$$Min Z = 3X_1 + 8X_2 + 4(X_3^+ - X_3^-)$$

Subject to

$$X_1 + X_2 - S_1 = 8$$

$$2X_1 - 3X_2 + S_2 = 0$$

$$X_2 - S_3 = 9$$

$$X_1, X_2, X_3^+, X_3^-, S_1, S_2, S_3 \ge 0$$

Q2: For the LP, answer the following questions?

$$\operatorname{Max} Z = 5X_1 + 4X_2$$

Subject to

$$6X_1 + 4X_2 \le 24$$

$$X_1 + 2X_2 \le 6$$

$$X_1 \ge 0, X_2 \ge 0$$

- a) Express the problem in equation form (standard form).
- b) Determine all basic solutions and classify them as feasible and infeasible.
- c) Use direct substitution in the objective function to determine the optimum basic feasible solution.
- d) Verify graphically that the solution obtained in (c) is the optimum LP solution.

Bayan Almukhlif 2 | بيان المخلف

The standard form

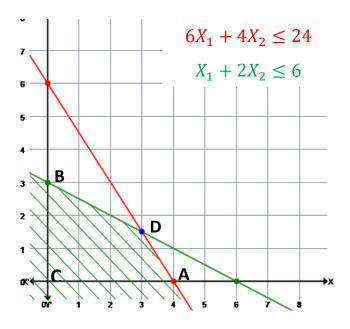
Max $Z = 5X_1 + 4X_2$ Subject to $6X_1 + 4X_2 + S_1 = 24$ $X_1 + 2X_2 + S_2 = 6$ $X_1 \ge 0, X_2 \ge 0, S_1 \ge 0, S_2 \ge 0$

Note:

(m) linear equations or basic variables; (n-m) non-basic variables To find total number of basic solutions by use $\binom{n}{m} = nC_m$ "combinations" All basic solutions are not necessarily feasible.

We have m=2 constraints and n=4 variables, thus n-m=2 Non-basic variables (zero variables). Total number of Basic solutions are $\binom{4}{2} = 6$

Non-basic Variables	Basic Variables & Basic Solution	Feasibility Status	Extreme point	Objective Value
S_1, S_2	$X_1 = 3$, $X_2 = 1.5$	Feasible	D	21
S_2, X_2	$X_1 = 6$, $S_1 = -12$	Infeasible		
S_1, X_2	$X_1 = 4$, $S_2 = 2$	Feasible	Α	20
S_2, X_1	$X_2 = 3$, $S_1 = 12$	Feasible	В	12
S_1, X_1	$X_2 = 6$, $S_2 = -6$	Infeasible		
X_1, X_2	$S_1 = 24$, $S_2 = 6$	Feasible	С	0



3 | بيان المخلف

$$6x_{1}+4x_{2}=24$$

-6* $x_{1}+2x_{2}=6$

$$\frac{-4 - 12) \times_{2} = 24 - 36}{-8 \times_{2} = -12}$$

$$\frac{\times_{2} = -12}{\times_{2} = -5}$$

$$\times + 2(1.5) = 6$$

 $\times = 6 - 3 = 3$

X,=3

(2) S=X=0

$$X_{1}+2X_{2}+S_{2}=6$$

$$6(6) + 4(0) + 5 = 24$$

 $5 = 24 - 36$

[3] S = X = 0

$$6X_{1} + 4X_{2} + 5_{1} = 24$$

 $6X_{1} = 24$

$$X,+2X+S=6$$

 $4+2(0)+S=6$
 $S_{2}=2$

9 5=x=0

$$X_{1}^{+2}X_{2}^{+}+S_{2}^{=6}$$
 $2X_{2}^{=6}$
 $X_{3}^{=3}$

$$6X_{1}+4X_{2}+5=24$$

 $4(3)+5=24$
 $5_{1}=24-12$
 $5_{1}=12$

[5] S,=X=0

$$6 \times + 4 \times_{2} + 5 = 24$$
 $4 \times_{2} = 24$

$$X_1 + 2X_2 + S_3 = 6$$

 $Z_1(6) + S_2 = 6$
 $S_2 = 6 - 12$
 $S_3 = -6$

(X = X = 0

$$6x + 4x + 5 = 24$$

$$X + 2X_2 + S = 6$$

1- Max $Z = 3X_1 + 2X_2$ H.W

Subject to

$$2X_1 + 4X_2 \le 8$$

$$X_1 + X_2 \le 2$$

$$X_1 \ge 0, X_2 \ge 0$$

- a) Express the problem in equation form.
- b) Determine the all basic solutions and classify them as feasible and infeasible.
- c) Use direct substitution in the objective function to determin the optimum basic feasible solution.
- d) Verify graphically that the solution obtained in (c) is the optimum LP solution.

Bayan Almukhlif 5 | بيان المخلف