Random Vectors and Joint Probability Distributions

Exercice 1 Suppose that (X, Y) has probability density function $f_{X Y}$ given by

$$
f_{X Y}(x, y)=6 x^{2} y \quad \text { for } \quad 0 \leq x \leq 1, \quad 0 \leq y \leq 1
$$

1) Find the cumulative distribution function $F_{X Y}$ of (X, Y).
2) Find the marginal cumulative distribution function of X and Y.
3) Find $\mathbb{P}(X+Y>1)$.
4) Are X and Y independent?
5) Find the expected value of $2 X+3 Y$.
6) Find the probability density function of X.
7) Find the probability density function of Y.
8) Find the expected value of X.
9) Find the expected value of Y.

Exercice 2 Let f be a probability density function of (X, Y) given by

$$
f_{X Y}(x, y)=a e^{-x} e^{-y} \quad \text { for } \quad 0<x<y<+\infty .
$$

1) Prove that the constant $a=2$..
2) Find the probability density function of X.
3) Find the probability density function of Y.
4) Are X and Y independent?

Exercice 3 Suppose that (X, Y) has probability density function $f_{X Y}$ given by

$$
f_{X Y}(x, y)= \begin{cases}k\left(\frac{1}{x^{2}}+y^{2}\right), & \text { if } 1 \leq x \leq 5-1 \leq y \leq 1 \\ 0, & \text { elsewhere. }\end{cases}
$$

1) Find the constant K.
2) Find the probability density functions of X and Y.
3) Are X and Y independent?
4) Compute the variances of X and Y.

Exercice 4 Find the joint probability density of the two random variables X and Y whose joint distribution is given by

$$
F(x, y)=\left\{\begin{array}{lr}
\left(1-e^{-x^{2}}\right)\left(1-e^{-y^{2}}\right), & \text { if } x>0, \\
0, & \text { elsewhere }
\end{array}\right.
$$

Exercice 5 Let f be a function defined by with joint (pdf)

$$
f_{X Y}(x, y)= \begin{cases}6 x y^{2}, & \text { if } \quad 0<x<1,0<y<1 \\ 0, & \text { elsewhere }\end{cases}
$$

1) Prove that f is a joint (pdf) for two continuous random variables X and Y.
2) Find the cumulative distribution function of X and Y.
3) Find the marginal cumulative distribution of X and Y.
4) Are X and Y independent?
5) Compute $\mathbb{P}(X<0.6, Y<0.6)$ and $\mathbb{P}(X+Y>1$.$) .$

Exercice 6 Random variables X and Y have joint PDF

$$
f_{X Y}(x, y)= \begin{cases}\frac{5 x^{2}}{2}, & \text { if } \quad-1 \leq x \leq 1,0 \leq y \leq x^{2} \\ 0, & \text { elsewhere }\end{cases}
$$

1) What are $\mathbb{E}(X)$ and $\mathbb{E}(Y)$.
2) Calculate the moments of X and Y.
3) Find $\mathbb{E}(X+Y)$

Exercice 7 Let X and Y be two discrete random variables with the joint probability distribution

$$
p(x, y)=\frac{1}{21}(x+y) \quad x=1,2,3 \quad y=1,2
$$

Find

1) the marginal distribution of X
2) the marginal distribution of Y
3) the joint cumulative distribution function of (X, Y)
4) the expected value of X
5) the expected value of Y
6) the moments of X and Y

For $\mathrm{y}=1,2$ find

1) the conditional probability mass $p_{X \backslash Y}$
2) the conditional mean $\mathbb{E}(X \backslash Y)$ and $\mathbb{E}\left(X^{2} \backslash Y=y\right)$ and $V(X \backslash Y=y)$
3) $\mathbb{E}\left(4 X^{3} \backslash Y=1\right)$
4) $\mathbb{P}(X<3 \backslash Y=2)$

Exercice 8 Let X and Y have the pdf

$$
f_{X Y}(x, y)=\left\{\begin{array}{l}
a x y, \quad \text { if } \quad 0<x<y<1 \\
0, \\
\text { elsewhere }
\end{array}\right.
$$

1) Prove that $a=8$
2) Compute $\mathbb{E}\left(X^{2} Y\right)$
3) Find $f_{X \backslash Y}$
4) Compute $\mathbb{E}\left(X^{2} \backslash Y=0.5\right)$
