Solution Key: Mid-term Exam I of MATH-244 (Linear Algebra) / Semester 451

Question 1: [Marks: 4+2+3]:

a) Find the reduced row echelon form of the matrix $A = \begin{bmatrix} -1 & 2 & -3 & -1 \\ 0 & -2 & 0 & 0 \end{bmatrix}$ and use it to find

non-trivial solutions of the linear system
$$AX = O$$
, where $O = \begin{bmatrix} 0 & 0 & 0 & 0 \end{bmatrix}^T$.

Solution: $A = \begin{bmatrix} 1 & 0 & 3 & 0 \\ -1 & 2 & -3 & -1 \\ 0 & -2 & 0 & 0 \\ 0 & 0 & 0 & -2 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 3 & 0 \\ 0 & 2 & 0 & -1 \\ 0 & -2 & 0 & 0 \\ 0 & 0 & 0 & -2 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 3 & 0 \\ 0 & 2 & 0 & -1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 3 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$ (REF). [2 marks]

Hence, (-3t, 0, t, 0), $\forall 0 \neq t \in \mathbb{R}$, is a non-trivial solution of the system AX = 0. [2 marks]

b) Let *B* be a 3×3 matrix with det(B) = 2. Compute $det(B^{-1} + adj(B))$.

Solution: $det(B^{-1} + adj(B)) = det(B^{-1} + det(B) B^{-1}) = det(B^{-1} + 2B^{-1}) = det(3B^{-1}) = \frac{3^3}{det(B)} = \frac{27}{2}$. [2 marks]

c) Let
$$P = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 2 & 1 \\ 1 & 3 & -1 \end{bmatrix}$$
. Compute $adj(P)$ and use it to find P^{-1} .

Solution:
$$adj(P) = c^{T} = \begin{bmatrix} -5 & 2 & 1 \\ 1 - 1 & -2 \\ 1 - 1 & 1 \end{bmatrix}^{T} = \begin{bmatrix} -5 & 1 & 1 \\ 2 - 1 & -1 \\ 1 & -2 & 1 \end{bmatrix}. det(P) = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 2 & 1 \\ 1 & 3 - 1 \end{bmatrix} = -3. [1.5 + .5 marks]$$
Hence, $P^{-1} = \frac{1}{\det(P)} adj(P) = \frac{1}{-3} \begin{bmatrix} -5 & 1 & 1 \\ 2 - 1 & -1 \\ 1 - 2 & 1 \end{bmatrix}.$ [1 mark]

Question 2: [Marks: 2+3+3]:

a) Give example of an invertible matrix A with tr(A) = 0.

Solution: For any non-zero real number x, the matrix $A = \begin{bmatrix} -x & x \\ x & x \end{bmatrix}$ is invertible because [1 mark] $|A| = -2x^2 \neq 0$. However, tr(A) = 0.

b) Find the values of λ for which the matrix $C = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & \lambda \\ 1 & -1 & 3 - 2\lambda \end{bmatrix}$ is not invertible.

Solution: Since det(C) = 0 for any real value of λ , the matrix C is non-invertible for all $\lambda \in \mathbb{R}$. [1+2 marks]

c) Solve the matrix equation AZ = X + Y for Z, where A is an invertible matrix of size 3,

$$X = \begin{bmatrix} -1 \\ 2 \\ 3 \end{bmatrix}$$
, $Y = \begin{bmatrix} 5 \\ 0 \\ -4 \end{bmatrix}$, $AX = \frac{1}{3}X$ and $AY = \frac{1}{2}Y$.

Solution: $AX = \frac{1}{3}X$ gives $A^{-1}X = 3X = \begin{bmatrix} -3 \\ 6 \\ 9 \end{bmatrix}$; similarly, $AY = \frac{1}{2}Y$ gives $A^{-1}Y = \begin{bmatrix} 10 \\ 0 \\ -8 \end{bmatrix}$. [2 marks]

Hence,
$$AZ = X + Y$$
 implies $Z = A^{-1}X + A^{-1}Y = \begin{bmatrix} -3 \\ 6 \\ 9 \end{bmatrix} + \begin{bmatrix} 10 \\ 0 \\ -8 \end{bmatrix} = \begin{bmatrix} 7 \\ 6 \\ 1 \end{bmatrix}$. [1 mark]

Question 3: [Marks: 4+4]

a) Find the values of δ for which the following linear system of equations

$$x + y + z + t = 4$$

 $x + \delta y + z + t = 4$
 $x + y + \delta z + (3 - \delta) t = 6$
 $2x + 2y + 2z + (\delta - 5) t = 6$

has: (i) no solution (ii) infinitely many solutions.

Hence, the system has no solution if $\delta = 7.1$ and no infinitely many solutions . [1+1 marks]

b) Use Cramer's rule to solve the following linear system of equations:

$$x + y = 1$$
$$x + 2y + z = -1$$

$$x + 3y - z = 2.$$

Solution: Let A denote the matrix of coefficients. Then, $|A| = \begin{vmatrix} 1 & 1 & 0 \\ 1 & 2 & 1 \\ 1 & 3 & -1 \end{vmatrix} = -3$. So, the

Cramer's is applicable on the given system. Therefore,

$$x = \frac{\begin{vmatrix} 1 & 1 & 0 \\ -1 & 2 & 1 \\ 2 & 3 - 1 \end{vmatrix}}{|A|} = \frac{-4}{-3} = \frac{4}{3}; y = \frac{\begin{vmatrix} 1 & 1 & 0 \\ 1 & -1 & 1 \\ 1 & 2 & -1 \end{vmatrix}}{|A|} = \frac{1}{-3} = \frac{-1}{3} \text{ and } z = \frac{\begin{vmatrix} 1 & 1 & 1 \\ 1 & 2 & -1 \\ 1 & 3 & 2 \end{vmatrix}}{|A|} = \frac{5}{-3} = \frac{-5}{3}.$$
[1+1+1 marks]

$$-1-(-2)=1$$

$$-1-(-2)=1$$
 $773+1=5$