King Saud University Department of Mathematics

Mid Term Exam

Question 1 [4] Let A and B be non-empty bounded sets of positive real numbers such that $\operatorname{lnf}(\mathrm{B})>0$. Define the set $\frac{A}{B}=\left\{\frac{a}{b}: \quad a \in A, b \in B\right\}$.
Show that $\operatorname{Sup}\left(\frac{A}{B}\right)=\frac{\operatorname{Sup}(A)}{\operatorname{Inf}(B)}$.

Question 2 [3]

Let $A=\{\sqrt{n+1}-\sqrt{n}, \quad n \in \mathbb{N}\}$. Determine sup A and $\operatorname{Inf} \mathrm{A}$ where they exist. Question 3 [3] Use the definition of convergence to prove that

$$
\lim _{n \rightarrow \infty} \frac{10 n^{2}}{n^{2}+16 n+1}=10
$$

Question 4 [4]

Determine whether the sequence $\left(\frac{\mathrm{n}-\cos (n)}{n}\right)$ is convergent or divergent, and find the limit where it exists.

Question 5 [4]

Prove that $\left\{\frac{n^{2}-1}{n^{2}}\right\}$ is Cauchy using directly the definition of Cauchy sequences.

Question $6[4+4+4]$

Test the following series for convergence:
a. $\sum_{n=1}^{\infty} \frac{2^{n}}{n!}$
b. $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{\sqrt{n}}$
c. $\sum_{n=1}^{\infty} e^{-n^{2}}$

