King Saud University College of Engineering Civil Engineering Department

CE 472 Reinforced Concrete II 2nd Semester 1427-1428 H Duration: 2 hrs

<u>First mid-term Exam</u>

Problem 1 (80 %)

The floor shown in Fig.1, part of 4-story building, is to be designed by <u>two alternative methods</u>: <u>as a solid</u> <u>one way slab</u> and <u>as a void one way joist slab of a typical section shown in Fig.2</u>.

Design Criteria $f_c = 25 \text{ MPa}$ $f_y = 420 \text{ Mpa}$ Concrete density = 25 kN/m³

All beams have 300 mm width and 600 mm height. All columns have 300 x 300 mm sections, and Superimposed dead load = 2 kN/m^2 , live load = 3 kN/m^2 , exterior walls weight = 3 kN/m^2 and wall height = 2.8 m. No interior walls used.

<u>A – Solid slab design:</u> A 180 mm thick solid one way slab is used.

- a) Check the slab thickness for the SBC-Code deflection requirements.
- b) Determine maximum design negative and positive moments in 1-m wide typical slab strip.
- c) Determine the main reinforcement for 1-m wide strip assuming a negative moment of 20 kN.m.
- d) Calculate the design load on beam BE.
- e) Calculate the design load on beam DF.

<u>B – Joist slab design</u>: The typical rib cross-section used is shown in Fig.2.

a) Check the thickness for SBC code requirements

- b) Suggest and show the appropriate direction of the ribs (joists)
- c) Determine the design load on a typical rib.
- d) Calculate the design load on beam AD.
- e) Calculate the factored axial load on column A at the ground floor level.

Problem 2 (20 %):

For the tied column of section (500 x 500 mm) shown in Fig. 3 a) Determine the nominal axial strength in pure compression P_0 and the corresponding maximum design compression $\phi P_{n(max)}$.

b) Design the column ties and show details.

 $A_{st}=8\phi~25~$ Clear cover =40~mm~ f'_c = 20 MPa ~ f_y = 420 Mpa ~

Fig. 3