First mid-term Exam

The floor shown in Fig.1, part of 3-story building, is to be designed by two alternative methods: as a solid one way slab and as a void one way joist slab of a typical section shown in Fig. 2.

$$
\text { Design Criteria } \quad f_{c}^{\prime}=25 \mathrm{MPa} \quad \mathrm{fy}=420 \mathrm{Mpa} \quad \text { Concrete density }=25 \mathrm{kN} / \mathrm{m}^{3}
$$

All beams have 300 mm width and 600 mm height. All columns have $300 \times 300 \mathrm{~mm}$ sections, and Superimposed dead load $=2 \mathrm{kN} / \mathrm{m}^{2}$, live load $=3 \mathrm{kN} / \mathrm{m}^{2}$. External masonry wall of 3.0 m height and 0.2 m thickness on beam EF, knowing that masonry unit weight is $15 \mathrm{kN} / \mathrm{m}^{3}$.

A - Solid slab design (50 \%):

A 180 mm thick solid one way slab is used.
a) Check the slab thickness for the SBC-Code deflection requirements.
b) Determine maximum factored negative and positive moments in $1-\mathrm{m}$ wide typical slab strip.
c) Determine the main reinforcement for $1-\mathrm{m}$ wide strip assuming a negative moment of $25 \mathrm{kN} . \mathrm{m}$, as well as the bar spacing.
d) Calculate the factored load on beam CD.
e) Calculate the factored axial force on column E at the ground floor level (all floors are identical).

B - Joist slab design ($\mathbf{5 0} \%$):

The typical rib cross-section used is shown in Fig.2. Ribs are spanned in the short direction.
a) Check the joist dimensions for SBC code requirements
b) Determine the factored load on a typical rib.
c) Determine maximum factored negative and positive moments in a typical joist.
d) Determine the main reinforcement for a typical joist assuming a negative moment of $28 \mathrm{kN} . \mathrm{m}$.
e) Calculate the factored load on beam EF.

Fig. 2

Fig. 1

