Chapter 6 :Minimax Test

Example 1 :

Let X be gamma random variable with distribution $\operatorname{Gamma}(5, \theta)$. Let $X_{1}, X_{2}, \ldots, X_{6}$ be 6 copies of X. Test the hypothesis $H_{0}: \theta=1$ vs $H_{a}: \theta=\frac{1}{2}$ by $\gamma_{M M}$. Consider the following priori and the losses functions:

$$
g\left(\theta_{0}\right)=0.6, g\left(\theta_{1}\right)=0.4, \mathcal{A}=\mathfrak{L}\left(d_{1}, \theta_{0}\right)=9, \mathcal{B}=\mathfrak{L}\left(d_{0}, \theta_{1}\right)=2
$$

Find $\gamma_{M M}$ and verify that $k=43.631$.
Solution 1:
Probability distribution function of gamma:

$$
\begin{aligned}
f(x ; \theta) & =\frac{\theta^{5}}{\Gamma(5)} x^{5-1} e^{-\theta x} \\
& =e^{5 \log (\theta)-\log (\Gamma(5))+4 \log (x)-\theta x}
\end{aligned}
$$

Hence

$$
\begin{aligned}
a(\theta) & =5 \log (\theta) \\
b(x) & =4 \log (x)-\log (\Gamma(5)) \\
c(\theta) & =-\theta \\
d(x) & =x
\end{aligned}
$$

$f(x ; \theta)$ belongs to the class of exponential family.
Since $c(\theta)$ is an decreasing function, then $\gamma_{M M}$ reject H_{0} if $\sum d(x)>k$:

$$
\Rightarrow \quad \text { Reject } \quad H_{0} \quad \text { if } \sum x>k
$$

where k is found by solving the equation:

$$
\begin{aligned}
\alpha_{M M} \mathcal{A} & =\beta_{M M} \mathcal{B} \\
9 \times P\left(\sum x>k \mid \theta=1\right) & =2 \times P\left(\sum x<k \mid \theta=0.5\right) \\
9 \times P(S>k \mid \theta=1) & =2 \times P(S<k \mid \theta=0.5) \\
9 \times P(U>2 k) & =2 \times P(U<k)
\end{aligned}
$$

Thus $k=43.631$. Compute $\alpha_{M M}$ and $\beta_{M M}$:

$$
\begin{aligned}
\alpha_{M M} & =P(\text { Type } I \quad \text { Error }) \\
& =P\left(\text { Reject } H_{0} \mid H_{0} \text { true }\right) \\
& =P\left(\sum x>43.631 \mid \theta=1\right) \\
& =P(S>43.631 \mid \theta=1) \\
& =P(U>2 \times 43.631) \\
& =P(U>87.262) \\
& =\frac{0.025+0.01}{2} \\
& =0.0175 .
\end{aligned}
$$

$$
\begin{aligned}
\beta_{M M} & =P(\text { Type II Error }) \\
& =P\left(\text { Accept } H_{0} \mid H_{1} \text { true }\right) \\
& =P\left(\sum x<43.631 \left\lvert\, \theta=\frac{1}{2}\right.\right) \\
& =P\left(S<43.631 \left\lvert\, \theta=\frac{1}{2}\right.\right) \\
& =P(U<43.631) \\
& =1-P(U>43.631) \\
& =1-\frac{0.95+0.90}{2} \\
& =0.075 .
\end{aligned}
$$

Compare $\gamma_{M M}$ and $\gamma_{M P}$:

$$
\begin{aligned}
& R\left(\gamma_{M M}, \theta_{0}\right)=\alpha_{M M} \mathcal{A}=0.15 \\
& R\left(\gamma_{M M}, \theta_{1}\right)=\beta_{M M} \mathcal{B}=0.15
\end{aligned}
$$

$$
\begin{aligned}
\max \left(R\left(\gamma_{M M}, \theta_{0}\right), R\left(\gamma_{M M}, \theta_{1}\right)\right) & <\max \left(R\left(\gamma_{M P}, \theta_{0}\right), R\left(\gamma_{M P}, \theta_{1}\right)\right) \\
\max (0.15,0.15) & <\max (0.45,0.06) \\
0.15 & <0.45
\end{aligned}
$$

		the right of the Critical Value								0.005
			0.9	0	0	0.10	0.05	0.025		
	8.034									
22	8.64	9.		12.:38		30.813	33.924			
23	9.260	10.	11.68	13.19	14:3	32.00	35.1	38.1		
2	9.8	10		13	15.		36	39:16		
25	10.520	11	13.120	14」:11		34.382				
26	11.160	12.19	13	15:17	17	35		41.12		
27	11	12		16.	18.			43.		
28	12.46	13	15.308	16	18		4	44, 6		
29	13	14	16	17.'08	19.	39.087	42	45.'7		
30	13.787	14		18	20			碞		
40	20.	22	24.433	26:509		51.805	55	59		
50	27.991									
60	35.534									
70	43				55.	85.527	90.5	95.023		
80	51.172	53	57	60.39	64	96.578	101.8	106.63		. 32
90	59.196	61.		69.126	7329		113.15			
100	67									

Example 2 :
Let X be gamma random variable with distribution normal $(\theta, 1)$. Let $X_{1}, X_{2}, \ldots, X_{16}$ be 16 copies of X. Test the hypothesis $H_{0}: \theta=0$ vs $H_{a}: \theta=1$ by $\gamma_{M M}$. Consider the following priori and the losses functions:

$$
g\left(\theta_{0}\right)=0.7, g\left(\theta_{1}\right)=0.3, \mathcal{A}=\mathfrak{L}\left(d_{1}, \theta_{0}\right)=8, \mathcal{B}=\mathfrak{L}\left(d_{0}, \theta_{1}\right)=3
$$

$k=0.5516$

$$
\begin{aligned}
\alpha_{M M} & =P(\bar{X}>0.5516 \mid \theta=0) \\
\beta_{M M} & =P(\bar{X}<0.5516 \mid \theta=1)
\end{aligned}
$$

