Chapter 5 :Testing Hypothesis

There are four possible situations that determines our decision is correct or in error. These four situations are summarized below:

	H_{o} is true	H_{o} is false
Accept H_{o}	Correct Decision	Type II Error
Reject H_{o}	Type I Error	Correct Decision

- The error type 1 of the test γ is: reject H_{0} when it is true .
- the error type 2 of the test γ is :accept H_{0} when it is false.
- The significance level $(\alpha): \mathrm{P}$ (Type I error)

$$
\alpha=P\left(\text { Reject } H_{0} \mid H_{0} \text { true }\right)
$$

This is also equivalent to

$$
\alpha=P\left(\text { Accept } H_{a} \mid H_{0} \text { true }\right)
$$

- (β): $\mathrm{P}($ Type II error $)$

$$
\beta=P\left(\text { Accept } H_{0} \mid H_{0} \text { false }\right)
$$

Similarly, this is also equivalent to

$$
\beta=P\left(\text { Accept } H_{0} \mid H_{a} \text { true }\right)
$$

- The power function of a hypothesis test

$$
\pi(\theta)=\left\{\begin{array}{l}
P\left(\text { Reject } H_{0} \mid H_{a} \text { True }\right) . \\
1-P(\text { TypeIIerror })=1-\beta .
\end{array}\right.
$$

Example 1: Let $X_{1}, X_{2}, \ldots, X_{20}$ be a random sample from a distribution with probability density function

$$
f(x ; p)= \begin{cases}p^{x}(1-p)^{1-x} & \text { if } x=0,1 \\ 0 & \text { otherwise }\end{cases}
$$

where $0<p \leq \frac{1}{2}$ is a parameter. The hypothesis $H_{0}: p=\frac{1}{2}$ to be tested against $H_{a}: p<\frac{1}{2}$. If H_{0} is rejected when $\sum_{i=1}^{20} X_{i} \leq 6$, then what is the probability of type I error?
Solution 1:
Since each observation $X_{i} \sim B E R(p)$, the sum the observations $\sum_{i=1}^{20} X_{i} \sim B I N(20, p)$. The probability of type I error is given by:

$$
\begin{aligned}
\alpha & =P(\text { TypeIError }) \\
& =P\left(\text { Reject } H_{0} \mid H_{0} \text { true }\right) \\
& =P\left(\sum_{i=1}^{20} X_{i} \leq 6 \mid H_{0}: p=\frac{1}{2}\right) \\
& =\sum_{i=0}^{6}\binom{20}{k}\left(\frac{1}{2}\right)^{k}\left(1-\frac{1}{2}\right)^{20-k} \\
& =0.0577
\end{aligned}
$$

Hence the probability of type I error is 0.0577 .

Example 2 : Suppose X has the density function

$$
f(x)= \begin{cases}\frac{1}{\theta} & \text { if } 0<x<\theta \\ 0 & \text { otherwise }\end{cases}
$$

If one observation of X is taken, what are the probabilities of Type I and Type II errors in testing the null hypothesis $H_{0}: \theta=1$ against the alternative hypothesis $H_{a}: \theta=2$, if H_{0} is rejected for $X>0.92$.

Solution 2:

The probability of type I error is given by:

$$
\begin{aligned}
\alpha & =P(\text { TypeIError }) \\
& =P\left(\text { Reject } H_{0} \mid H_{0} \text { true }\right) \\
& =P\left(X>0.92 \mid H_{0}: \theta=1\right) \\
& =\int_{0.92}^{1} 1 \mathrm{~d} x \\
& =\left.x\right|_{0.92} ^{1} \\
& =0.08
\end{aligned}
$$

The probability of type II error is given by:

$$
\begin{aligned}
\beta & =P(\text { TypeIIError }) \\
& =P\left(\text { Accept } H_{0} \mid H_{0} \text { False }\right) \\
& =P\left(\text { Accept } H_{0} \mid H_{a} \text { True }\right) \\
& =P\left(X \leq 0.92 \mid H_{a}: \theta=2\right) \\
& =\int_{0}^{0.92} \frac{1}{2} \mathrm{~d} x \\
& =\left.\frac{x}{2}\right|_{0} ^{0.92} \\
& =0.46
\end{aligned}
$$

Hence the probability of type I error is 0.08 and the probability of type II error is 0.46 .
Example 3 : Let $X_{1}, X_{2}, \ldots, X_{8}$ be a random sample of size 8 from a Poisson distribution with parameter λ. Reject the null hypothesis $H_{0}: \lambda=0.5$ if the observed sum $\sum_{i=1}^{8} x_{i} \geq 8 . H_{a}: \lambda \neq 0.5$. First, compute the significance level α of the test.
Second, find the power function $\pi(\lambda)$ of the test as a sum of Poisson probabilities when H_{a} is true. Solution 3:
significance level α :

$$
\begin{aligned}
\alpha & =P(\text { TypeIError }) \\
& =P\left(\text { Reject } H_{0} \mid H_{0} \text { true }\right) \\
& =P\left(\sum_{i=1}^{8} x_{i} \geq 8 \mid H_{0}: \lambda=0.5\right) \\
& =P(y \geq 8) \\
& =1-P(y<8) \\
& =1-\sum_{y=0}^{7} \frac{4^{y} e^{-4}}{y!} \\
& =0.0511
\end{aligned}
$$

power function $\pi(\lambda)$ of the test:

$$
\begin{aligned}
\pi(\lambda) & =P\left(\text { Reject } H_{0} \mid H_{a} \text { true }\right) \\
& =P\left(\text { Reject } H_{0} \mid H_{a} \text { true }\right) \\
& =P\left(\sum_{i=1}^{8} x_{i} \geq 8 \mid H_{a}: \lambda \neq 0.5\right) \\
& =P(y \geq 8) \\
& =1-P(y<8) \\
& =1-\sum_{y=0}^{7} \frac{(n \lambda)^{y} e^{-n \lambda}}{y!} ; \quad(\text { where } \lambda \neq 0.5)
\end{aligned}
$$

Example 4 : class activity

A normal population has a standard deviation of 16. The critical region for testing $H_{0}: \mu=5$ versus the alternative $H_{a}: \mu=k$ is $\bar{X}>k-2$. What would be the value of the constant k and the sample size n which would allow the probability of Type I error to be 0.0228 and the probability of Type II error to be 0.1587 .

Solution 4:
$X \sim N\left(\mu, 16^{2}\right)$

$$
\begin{aligned}
\alpha & =P(\text { TypeIError }) \\
0.0228 & =P(\bar{x}>k-2 \mid \mu=5) \\
0.0228 & =P\left(\frac{\bar{x}-\mu}{\sigma / \sqrt{n}}>\frac{k-2-5}{16 / \sqrt{n}}\right) \\
0.0228 & =P\left(Z>\frac{k-7}{16 / \sqrt{n}}\right) \\
0.0228 & =1-P\left(Z<\frac{k-7}{16 / \sqrt{n}}\right) \\
P\left(Z<\frac{k-7}{16 / \sqrt{n}}\right) & =0.9772
\end{aligned}
$$

Hence ,from standard normal table, we have :

$$
\frac{k-7}{16 / \sqrt{n}}=2
$$

which gives

$$
(k-7) \sqrt{n}=32
$$

Similarly,

$$
\begin{aligned}
\beta & =P(\text { TypeIIError }) \\
\beta & =P\left(\text { Accept } H_{0} \mid H_{0} \text { False }\right) \\
\beta & =P\left(\text { Accept } H_{0} \mid H_{a} \text { True }\right) \\
0.1587 & =P(\bar{x}>k-2 \mid \mu=k) \\
0.1587 & =P\left(Z<\frac{k-2-k}{16 / \sqrt{n}}\right) \\
0.1587 & =P\left(Z<\frac{-2}{16 / \sqrt{n}}\right)
\end{aligned}
$$

Hence, from standard normal table, we have :

$$
\begin{aligned}
\frac{-2}{16 / \sqrt{n}} & =-1 \\
2 \sqrt{n} & =16 \\
\sqrt{n} & =8 \\
n & =8^{2}=64
\end{aligned}
$$

Letting this value of n in :

$$
\begin{aligned}
(k-7) \sqrt{n} & =32 \\
(k-7) \sqrt{64} & =32 \\
k & =\frac{32}{8}+7
\end{aligned}
$$

We see that $k=11$.

Example 5 : Homework

A random sample of size 4 is taken from a normal distribution with unknown mean μ and variance $\sigma^{2}>0$. To test $H_{0}: \mu=0$ against $H_{a}: \mu<0$ the following test is used: Reject H_{0} if and only if $X_{1}+X_{2}+X_{3}+X_{4}<-20$. Find the value of σ so that the significance level of this test will be closed to 0.14.

Solution 5:
Sice $\alpha=0.14$

$$
\begin{aligned}
\alpha & =P(\text { TypeIError }) \\
0.14 & =P\left(\text { Reject } H_{0} \mid H_{0} \text { true }\right) \\
0.14 & =P\left(X_{1}+X_{2}+X_{3}+X_{4}<-20 \mid H_{0}: \mu=0\right) \\
0.14 & =P\left(\left.\bar{X}<\frac{-20}{4} \right\rvert\, H_{0}: \mu=0\right) \\
0.14 & =P\left(Z<\frac{-5-0}{\sigma / \sqrt{4}}\right)
\end{aligned}
$$

we get from the standard normal table :

$$
\begin{aligned}
\frac{-5-0}{\sigma / 2} & =-1.08 \\
\frac{-10}{\sigma} & =-1.08 \\
\sigma & =9.259
\end{aligned}
$$

Definition

A distribution $f(x ; \theta)$ belongs to the class of exponential families if, it is written in the form:

$$
f(x ; \theta)=e^{a(\theta)+b(x)+d(x) c(\theta)}
$$

Example 6 :

Show that the Exponential distribution belong to the exponential family:

$$
f(y ; \theta)= \begin{cases}\theta e^{-y \theta} & \text { if } y>0, \theta>0 \\ 0 & \text { otherwise }\end{cases}
$$

Solution 6:

$$
\begin{aligned}
f(y ; \theta) & =\theta e^{-y \theta} \\
& =e^{\log (\theta)-y \theta} \\
& =e^{a(\theta)+b(y)+d(y) c(\theta)}
\end{aligned}
$$

where

$$
\begin{aligned}
a(\theta) & =\log (\theta) \\
b(y) & =0 \\
c(\theta) & =-\theta \\
d(y) & =y
\end{aligned}
$$

Theorem

If $f(x ; \theta)$ belongs to the class of exponential families, then the test $\gamma_{M P}$ for $H_{0}: \theta=\theta_{0}$ vs $H_{1}: \theta=\theta_{1}$ rejects H_{0} is reduced as follows:

	$\theta_{0}<\theta_{1}$	$\theta_{0}>\theta_{1}$
$c(\theta) \nearrow$	$\sum d\left(x_{i}\right)>k$	$\sum d\left(x_{i}\right)<k$
$c(\theta) \searrow$	$\sum d\left(x_{i}\right)<k$	$\sum d\left(x_{i}\right)>k$
	Alike	Inverse

k solves the equation

$$
\alpha_{M P}=\mathbf{P}\left(\text { Reject } \quad H_{0} \mid \theta_{0}\right) .
$$

Example 7 :
Let X be normal random variable with distribution $N(\theta, 1)$. Let $X_{1}, X_{2}, \ldots, X_{16}$ be 16 copies of X. Test the hypothesis $H_{0}: \theta=0$ vs $H_{a}: \theta=1$ by $\gamma_{M P}$ with size $\alpha_{M P}=0.05$.
Solution 7:

$$
f(x, \theta)=\frac{1}{\sqrt{2 \Pi}} e^{\frac{1}{2}(x-\theta)^{2}} ;-\infty<x<\infty
$$

$f(x ; \theta)$ belong to the class of exponential families :

$$
\begin{aligned}
f(x ; \theta) & =e^{-\frac{1}{2} \log (2 \Pi)-\frac{1}{2}(x-\theta)^{2}} \\
& =e^{-\frac{1}{2} \log (2 \Pi)-\frac{1}{2}\left(x^{2}-2 x \theta+\theta^{2}\right)} \\
& =e^{-\frac{1}{2} \log (2 \Pi)-\frac{1}{2} x^{2}+x \theta-\frac{\theta^{2}}{2}}
\end{aligned}
$$

Hence

$$
\begin{aligned}
a(\theta) & =-\frac{\theta^{2}}{2} \\
b(x) & =-\frac{1}{2} \log (2 \Pi)-\frac{1}{2} x^{2} \\
c(\theta) & =\theta \\
d(x) & =x
\end{aligned}
$$

Since $c(\theta)$ is an increasing function, then $\gamma_{M P}$ reject H_{0} if $\sum d(x)>k$:

$$
\Rightarrow \quad \text { Reject } \quad H_{0} \quad \text { if } \sum x>k
$$

To find the value of k :

$$
\begin{aligned}
\alpha_{M P} & =P(\text { TypeIError }) \\
0.05 & =P\left(\sum x>k \mid \theta=0\right) \\
0.05 & =P\left(\left.\bar{x}>\frac{k}{16} \right\rvert\, \theta=0\right) \\
0.05 & =P\left(Z>\frac{\frac{k}{16}-0}{1 / \sqrt{16}}\right) \\
0.05 & =P\left(Z>\frac{\frac{k}{16}}{1 / 4}\right) \\
0.05 & =P\left(Z>\frac{4 k}{16}\right) \\
0.05 & =1-P\left(Z<\frac{4 k}{16}\right) \\
P\left(Z<\frac{4 k}{16}\right) & =0.95
\end{aligned}
$$

from the standard normal table :

$$
\begin{aligned}
\frac{4 k}{16} & =1.645 \\
k & =6.58
\end{aligned}
$$

7.a: If $\sum_{i=1}^{16} x_{i}=10$, what is your conclusion? .
A. Accept H_{0}
B. $\underline{R e j e c t ~} H_{0}$

Reject H_{0} if $\sum x>6.58 \Rightarrow \sum x=10>6.58 \Rightarrow$ "Reject H_{0}.
7.b : Compute the probability of Type II error ? .

$$
\begin{aligned}
\beta_{M P} & =P(\text { TypeIIError }) \\
\beta_{M P} & =P\left(\text { Accept } H_{0} \mid H_{a} \text { True }\right) \\
& =P\left(\sum x \leq 6.58 \mid \theta=1\right) \\
& =P\left(\left.\bar{x} \leq \frac{6.58}{16} \right\rvert\, \theta=1\right) \\
& =P(\bar{x} \leq 0.41125 \mid \theta=1) \\
& =P\left(Z \leq \frac{0.41125-1}{1 / \sqrt{16}}\right) \\
& =P(Z \leq-2.355)
\end{aligned}
$$

from the standard normal table :

$$
\beta_{M P}=0.00914
$$

Example 8 :

Let X be gamma random variable with distribution $\operatorname{Gamma}(5, \theta)$. Let $X_{1}, X_{2}, \ldots, X_{6}$ be 6 copies of X. Test the hypothesis $H_{0}: \theta=1$ vs $H_{a}: \theta=\frac{1}{2}$ by $\gamma_{M P}$ with size $\alpha_{M P}=0.05$.
Solution 8:

$$
f(x, \theta)=\frac{\theta^{5}}{\Gamma(5)} x^{5-1} e^{-\theta x}
$$

$f(x ; \theta)$ belong to the class of exponential families :

$$
f(x ; \theta)=e^{5 \log (\theta)+4 \log (x)-\theta x-\log (\Gamma 5)}
$$

Hence

$$
\begin{aligned}
a(\theta) & =5 \log (\theta) \\
b(x) & =4 \log (x)-\log (\Gamma 5) \\
c(\theta) & =-\theta \\
d(x) & =x
\end{aligned}
$$

Since $c(\theta)$ is a decreasing function, then $\gamma_{M P}$ reject H_{0} if $\sum d(x)>k$:

$$
\Rightarrow \quad \text { Reject } \quad H_{0} \quad \text { if } \sum x>k
$$

To find the value of k :

$$
\begin{aligned}
\alpha_{M P} & =P(\text { TypeIError }) \\
0.05 & =P\left(\sum x>k \mid \theta=1\right), \quad \text { let } y=\sum x \quad \text { where } \quad x \sim \operatorname{Gamma}(5, \theta) \\
0.05 & =P(y>k) ; \quad y \sim \operatorname{Gamma}(n 5, \theta) \Rightarrow y \sim \operatorname{Gamma}(30,1)
\end{aligned}
$$

note: If $Y \sim \operatorname{Gamma}(n, \theta)$, then $T(X)=2 \theta Y \sim \chi_{2 n}^{2}$.
then

$$
\begin{aligned}
& y \sim \operatorname{Gamma}(n=30, \theta=1) \Rightarrow \begin{aligned}
U & =2 \theta y \sim \chi_{2 n}^{2} \\
U & =2(1) y \sim \chi_{2(30)}^{2}
\end{aligned} \\
& \\
& 0.05=P(y>k) \\
& 0.05=P(U>2 k) ; \quad U \sim \chi_{60}^{2}
\end{aligned}
$$

From Chi-square table :

$$
\begin{aligned}
2 k & =79.08 \\
k & =39.54
\end{aligned}
$$

8.a : Compute the probability of Type II error? Homework .

$$
\begin{aligned}
\beta_{M P} & =P(\text { TypeIIError }) \\
\beta_{M P} & =P\left(\text { Accept } H_{0} \mid H_{a} \text { True }\right) \\
& =P\left(y<39.54 \left\lvert\, \theta=\frac{1}{2}\right.\right) \\
& =P(U<39.54) ; U \sim \chi_{60}^{2} \\
& =1-P(U>39.54) \\
& =1-\left(\frac{0.99+0.98}{2}\right), \quad \text { From Chi-square table } \\
\Rightarrow \beta_{M P} & =0.015
\end{aligned}
$$

Degree of Freedom	Probability of Exceeding the Critical Value								
	0.99	0.95	0.90	0.75	0.50	0.25	0.10	0.05	0.01
1	0.000	0.004	0.016	0.102	0.455	1.32	2.71	3.84	6.63
2	0.020	0.103	0.211	0.575	1.386	2.77	4.61	5.99	9.21
3	0.115	0.352	0.584	1.212	2.366	4.11	6.25	7.81	11.34
4	0.297	0.711	1.064	1.923	3.357	5.39	7.78	9.49	13.28
5	0.554	1.145	1.610	2.675	4.351	6.63	9.24	11.07	15.09
6	0.872	1.635	2.204	3.455	5.348	7.84	10.64	12.59	16.81
7	1.239	2.167	2.833	4.255	6.346	9.04	12.02	14.07	18.48
8	1.647	2.733	3.490	5.071	7.344	10.22	13.36	15.51	20.09
9	2.088	3.325	4.168	5.899	8.343	11.39	14.68	16.92	21.67
10	2.558	3.940	4.865	6.737	9.342	12.55	15.99	18.31	23.21
11	3.053	4.575	5.578	7.584	10.341	13.70	17.28	19.68	24.72
12	3.571	5.226	6.304	8.438	11.340	14.85	18.55	21.03	26.22
13	4.107	5.892	7.042	9.299	12.340	15.98	19.81	22.36	27.69
14	4.660	6.571	7.790	10.165	13.339	17.12	21.06	23.68	29.14
15	5.229	7.261	8.547	11.037	14.339	18.25	22.31	25.00	30.58
16	5.812	7.962	9.312	11.912	15.338	19.37	23.54	26.30	32.00
17	6.408	8.672	10.085	12.792	16.338	20.49	24.77	27.59	33.41
18	7.015	9.390	10.865	13.675	17.338	21.60	25.99	28.87	34.80
19	7.633	10.117	11.651	14.562	18.338	22.72	27.20	30.14	36.19
20	8.260	10.851	12.443	15.452	19.337	23.83	28.41	31.41	37.57
22	9.542	12.338	14.041	17.240	21.337	26.04	30.81	33.92	40.29
24	10.856	13.848	15.659	19.037	23.337	28.24	33.20	36.42	42.98
26	12.198	15.379	17.292	20.843	25.336	30.43	35.56	38.89	45.64
28	13.565	16.928	18.939	22.657	27.336	32.62	37.92	41.34	48.28
30	14.953	18.493	20.599	24.478	29.336	34.80	40.26	43.77	50.89
40	22.164	26.509	29.051	33.660	39.335	45.62	51.80	55.76	63.69
50	27.707	34.764	37.689	42.942	49.335	56.33	63.17	67.50	76.15
60	37.485	43.188	46.459	52.294	59.335	66.98	74.40	79.08	88.38

Neyman-Pearson lemma

The test $\gamma_{M P}$ of size $\alpha_{M P}$ is found by the following steps:
(1) Take the Likelihood Ratio (LR) $\lambda=\frac{\ell\left(\underline{X} ; \theta_{0}\right)}{\ell\left(\underline{X} ; \theta_{1}\right)}$.
(2) Reject $H_{0}: \theta=\theta_{0}$ if $\lambda<k$.
(3) Find k by solving the implicit equation $\alpha_{M P}=\mathbf{P}\left(\lambda<k \mid \theta_{0}\right)$.

Example 9:
Suppose X has the density function

$$
f(y ; \theta)= \begin{cases}(1+\theta) x^{\theta} & \text { if } 0 \leq x \leq 1 \\ 0 & \text { otherwise }\end{cases}
$$

Based on a single observed value of X, find the most powerful critical region of size $\alpha=0.1$ for testing $H_{0}: \theta=1$ against $H_{a}: \theta=2$.(Use Neyman-Pearson lemma)
Solution 9:
By Neyman-Pearson Theorem, the form of the critical region is given by:
1- Take likelihood ratio (LR) :

$$
\begin{aligned}
\lambda & =\frac{\ell\left(\underline{X}, \theta_{0}\right)}{\ell\left(\underline{X}, \theta_{1}\right)} \\
\lambda & =\frac{\left(1+\theta_{0}\right) x^{\theta_{0}}}{\left(1+\theta_{1}\right) x^{\theta_{1}}} \\
& =\frac{2 x}{3 x^{2}} \\
& =\frac{2}{3 x}
\end{aligned}
$$

2- Reject $H_{0}: \theta=\theta_{0}$ if $\lambda<K$:

$$
\begin{aligned}
\mathcal{C} & =\left\{\frac{2}{3 x}<K\right\} \\
& =\left\{\frac{1}{x}<\frac{3}{2} K\right\} \\
& =\{x>a\}
\end{aligned}
$$

where a is some constant. Hence the most powerful or best test is of the form: Reject Ho if $X>a$. Since, the significance level of the test is given to be $\alpha=0.1$, the constant a can be determined. Now we proceed to find a. Since

$$
\begin{aligned}
\alpha & =P(\text { TypeIError }) \\
0.1 & =P\left(\text { Reject } H_{0} \mid H_{0} \text { true }\right) \\
& =P\left(X>a \mid H_{0}: \theta=1\right) \\
& =\int_{a}^{1} 2 x \mathrm{~d} x \\
& =1-a^{2}
\end{aligned}
$$

hence

$$
a^{2}=1-0.1=0.9
$$

Therefor

$$
a=\sqrt{0.9}
$$

