## Equivalence and indifference

## ☐ Equivalence

Two or more cash flow profiles are equivalent if their time value of money worth at a common point in time are equal.

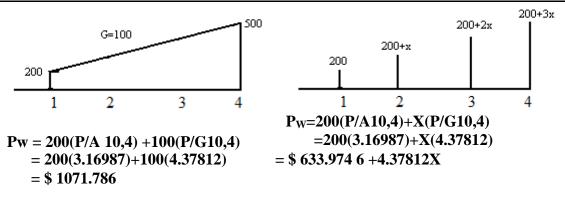
# $(time\ value\ of\ money)_1 = (time\ value\ of\ money)_2$

 $P_{w1} = P_{w2}$   $F_{w1} = F_{w2}$ 

Aw1=Aw2

#### **□** Indifference

Potential investor is indifferent between two or more cash flow profiles if they are equivalent.


$$P_{w1}=P_{w2}$$

Ex.5

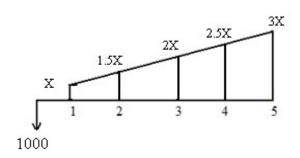
Determine value of X if two cash flows are equivalent at 10% compounded annually

| EOY | Cash Flow A | Cash Flow B |
|-----|-------------|-------------|
| 0   | 0           | 0           |
| 1   | 200         | 200         |
| 2   | 300         | 200+x       |
| 3   | 400         | 200+2x      |
| 4   | 500         | 200+3x      |

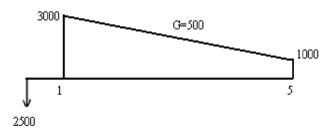
#### Solution



$$Pw_1 = Pw_2$$
1071.786=633.974 6 +4.37812X  $\longrightarrow$  X=100


## Ex.7 (43/189)

Consider the following two cash flow series


| EOY | Cash Flow Series | Cash Flow Series |
|-----|------------------|------------------|
|     | A                | В                |
| 0   | -1000            | -2500            |
| 1   | X                | 3000             |
| 2   | 1.5X             | 2500             |
| 3   | 2X               | 2000             |
| 4   | 2.5X             | 1500             |
| 5   | 3X               | 1000             |

Determine the value of X if two cash flows are equivalent at an interest rate of 15 percent per year compounded annually.

## Solution



 $P_{WA} = -1,000 + X (P|A 15\%,5) + 0.5X (P|G 15\%,5) = -\$1,000 + 6.239730X$ 

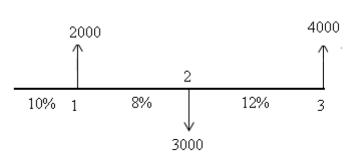


 $P_{WB} = -2,500+3,000 (P|A 15\%,5)-500 (P|G 15\%,5)=$4,668.91$ 

$$P_{WB} = P_{WA}$$

$$x = $908.52$$

#### Variable interest rate


#### Ex.6 (60/191)

Consider the following cash flow and interest rates:

| EOY | Interest Rate During | Cash Flow at end of |
|-----|----------------------|---------------------|
|     | period               | period              |
| 0   |                      | \$0                 |
| 1   | 10%                  | \$2000              |
| 2   | 8%                   | -\$3000             |
| 3   | 12%                  | \$4000              |

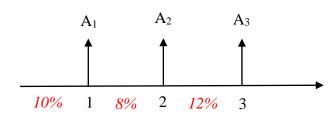
- a. Determine the present worth of this series of cash flow.
- b. Determine the future worth of this series of cash flow.
- c. Determine the annual worth of this series of cash flow.

#### Solution



a)

$$\begin{split} P_w = & 2,000 \; (P|F \; 10\%,1) \text{--} \; 3,000 \; (P|F \; 10\%,1) \; (P|F \; 8\%,1) + \; 4,000 \; (P|F \; 10,1) \; (P|F \; 8\%,1) \\ & (P|F \; 12\%,1) = \; \$ \; 2,299.19 \end{split}$$


 $P_w$  =2,000 (0.90909)- 3,000 (0.90909) (0.92593)+ 4,000 (0.90909) (0.92593) (0.89286)= \$ 2,299.19

b)

 $F_W = 2,000 (F|P 8\%,1) (F|P 12\%,1) - 3,000 \times (F|P 12\%,1) + 4,000 = \$3,059.20$ 

 $F_W = 2,000 (1.08000) (1.12000) - 3,000 \times (1.12000) + 4,000 = \$3,059.20$ 

c)



 $\begin{array}{l} P_w = & A_1 \; (P|F \; 10\%, 1) + A_2 \; (P|F \; 10\%, 1) \; (P|F \; 8\%, 1) + A_3 \; (P|F \; 10, 1) \; (P|F \; 8\%, 1) \; (P|F \; 12\%, 1) \end{array}$ 

 $2,299.19 = A_1 (0.90909) + A_2 (0.90909) (0.92593) + A_3 (0.90909) (0.92593) + A_3 (0.90909) (0.92593)$ 

$$A_1 = A_2 = A_3 = A \qquad \qquad \qquad \qquad A = \$ \ 918.8$$