GE 403 Engineering Economy

Eng. Howaidi Alotaibi Civil Engineering Department E-mail halshaibani@ksu.edu.sa

Equivalence & Indifference

- Two cash flow streams are said to be **equivalent** at k% interest if and only if their present worth are equal at k% interest.
- OR Two cash flow profiles are equivalent if their time value of money worth at a common point in time are equal.
- In engineering economic analyses, indifference means "to have no preference."
- Specifically, a potential investor is **indifferent** between two (or more) cash flow profiles if they are **equivalent**.

Ex. Determine the value of X if the two cash flows are equivalent at 10% compounded annually .

EOY	Cash Flow A	Cash Flow B
0	\$0	\$0
1	\$200	\$200
2	\$300	\$200+X
3	\$400	\$200+2X
4	\$500	\$200+3X

Solution

 $Pw_A = 200(P/A \ 10\%, 4) + 100(P/G \ 10\%, 4)$ $Pw_A = 200(3.16987) + 100(4.37812)$ $Pw_A = \$1071.786$ $Pw_{B} = 200(P/A \ 10\%, 4) + X(P/G \ 10\%, 4)$ $Pw_{B} = 200(3.16987) + X(4.37812)$ $Pw_{B} = \$ \ 633.974 + 4.37812X$

 $Pw_A = Pw_B$ 1071.786 = 633.974 +4.37812X X = \$100

Ex. Consider the following two cash flow series

EOY	Cash Flow A	Cash Flow B			
0	-\$1000	-\$2500			
1	X	\$3000			
2	1.5X	\$2500			
3	2X	\$2000			
4	2.5X	\$1500			
5	3X	\$1000			

Determine the value of X if two cash flows are equivalent at an interest rate

of 15 percent per year compounded annually.

Solution

 $Pw_A = -1,000+X(P|A 15\%,5)+0.5X(P|G 15\%,5)$ Pw $Pw_A = -\$1,000+6.239730X$ Pv

 $Pw_B = -2,500+3,000 (P|A 15\%,5)-500 (P|G 15\%,5)$ $Pw_B = $4,668.91$

 $Pw_A = Pw_B$ -\$1,000+6.239730X = \$4,668.91 X = \$908.5

Variable Interest Rates

Consider the following cash flows and interest rates:

End of Year	0	1	2	3	4	5	6
Cash Flow at End of Period	\$0	\$2000	-\$3000	\$0	\$0	\$0	\$4000
Interest Rate during Period		10%	8%	12%	12%	12%	12%

- Determine the present worth of this series of cash flows.
- Determine the future worth of this series of cash flows.
- Determine a 6-year uniform annual series that is equivalent to the original series.

Pw = 2,000 (P|F 10%,1) - 3,000 (P|F 10%,1) (P|F 8%,1) + 4,000 (P|F 10%,1) (P|F 8%,1) (P|F 12%,4)Pw = 2,000 (0.90909) - 3,000 (0.90909) (0.92593) + 4,000 (0.90909) (0.92593) (0.63552) = \$1,432.72

FW= Pw (F|P 10%,1)(F|P 8%,1)(F|P 12%,4)= 2,678.24

$FW= 2,000 (F|P 8\%,1) (F|P 12\%,4)-3,000 \times (F|P 12\%,4)+4,000$ FW= 2,000 (1.08000) (1.57352)-3,000 \times (1.57352)+4,000= \$2,678.24 OR

Solution

 $Pw = A_1(P|F \ 10\%, 1) + A_2(P|F \ 10\%, 1)(P|F \ 8\%, 1) + A(P|A \ 12\%, 4) \ (P|F \ 10\%, 1)$ $(P|F \ 8\%, 1)$

1,432.72 = A(0.90909) + A(0.90909)(0.92593) + A(3.03735)(0.90909)(0.92593)

