

King Fahd University of

Petroleum and Minerals

Department of Electrical Engineering EE 400 Communication Networks,

Major Exam I Sunday, 6 April 2008 6:30 pm – 8:00 pm

Name:
ID:
Sections: 1,2

Problem	Score	Out of
1		20
2		10
3		10
4		10
Total		50

Good luck!

Pr	oblem 1)		
114	1.1 Denote:		
***	Path setup required before session	A	
	Dedicated path during session	В	
	Contineous flow of data during session	C	
	Addressing Required	D	
	Routing Required	Е	
	Data always arrive in sequence of transmission	on F	
	List ALL letters TRUE for:	1000E	
عدا	(a) Circuit Switching:	ABCDI	
١٠٤	(b) Connection-Oriented Packet Switching:	ACOF	
7	(c) Connectionless-Oriented Packet Switchin	g:	
21	 The multi-level scheme will have better 	more power at a given bit error rate, ion rate for a fixed channel	
	power consumption .	True	
2	 1.3 Answer the following questions (True/Fal The usable bandwidth for twisted-pair The usable bandwidth for optical fibe region) extends to several Tera Hertz 	copper lines extends to ~ 1GHz _a\5\ext{SQ}	
2/	1.4 Answer the following questions: a) Give two disadvantages and two advantages are formed to the following questions: Advantage Extremy more formed to the following questions:	Septroplosi a	
2 ₁ /2	2) very low Signal Attenuate b) What is the difference between single r In Multimode, multiple v	ave follow dufferent Path	. 2,
	In Singlemode, only di	rect path propagat	قع

2

c) For the same distance, arrange the following transmission media in terms of their need for repeaters: coaxial cable, twisted pair, single-mode fiber, multi-mode fiber

mode liber.

Single-mode fiber

to Multi-mode fiber

High Coaxial cable

twisted poin

1.5 Consider the OSI network model. Which layer is responsible for:

Functions, Services and Protocols	Layer
Modulation	Philsical
Medium access control	Datalink
Flow Control	Data link
ARQ and Error detection	Data link
Application programs such as Web access and file transfer	Application
Message segmentation and reassembly	Transport
Pulse shaping of data bits for transmission through the channel	Physical
Node-to-Node delivery	Network
Routing	Network
Congestion control to deal with traffic surges	Network
End-to-End Delivery	Transport
Determining the best path to send packets	Network

Problem 2)

Consider communication over a channel with bandwidth WHz and Signal-to-Noise Ratio SNR.

- (a) If you have a choice between doubling the bandwidth and quadrupling (four times) the SNR, which one you think will increase the channel capacity more? Explain why?
- (b) How should you increase the SNR in order to match the capacity increase that results from doubling the bandwidth?
- (c) For a typical analog phone line used for data communication, compute the channel capacity for the following parameters: W = 3400Hz and SNR = 45dB.

Note: Channel capacity formula: $C = W \log_2(1+SNR)$ in bits/sec, where SNR is in linear scale (not dB). You can use the approximation: $C = W_c \log_2(SNR)$.

CI= 2Wlog (SNR) => doubling BW Cz= Wlog, (4SNR) => quadripling SNR $\nabla C = C' - (S = Snpo^{2}(2NS) - npo^{2}(ASNS)$ = W/og, (SNR2) -W/og, (45NR) = Wlogy SNR2] =Wlogz (SUR] 00 il SNR>4 > DC>0 => doubling the BW increases the capacity il SNR(4 3)OCCO => quadrupling the SuR increases the capacity more. Usually, we operate at high swa >>4 So ingenoval, doubling the BW villingease the capacity more than quadrupling the If we doubte the BW, we should square the SNR to get the same capacity. $C = 2w \log_2(SuR)$ $C = w \log_2(1+SuR)$; $45dB = 10 = 10 = 10 = 3400 \log_2(1+10) = 50.83 k bps$

Problem 3)

An organization is assigned the network address 200.11.8.0. The organization has 5 departments. It is required that each department has its own subnet.

2 (c) How many hosts can be assigned to each department?

Number of Hosts for defentment = 2-2=32-7=30

Problem 4)

Problem 4)

(11111111 11111111 00000000). Suppose a header consists of four 16-bit words: (11111111 11111111, 11111111 00000000). 11110000 11110000, 11000000 11000000). Find the internet checksum for this code.

Solution:

 $b_1 = 111111111 00000000 = 65280$

 $b_2 = 11110000 11110000 = 61680$

 $b_3 = 11000000 \ 11000000 = 49344$

 $x = b_0 + b_1 + b_2 + b_3$ modulo 65535 = 241839 modulo 65535 = 45234

 $b_4 = -x \mod 65535 = 20301$

So the internet checksum = 01001111 01001101

b) Let $g_1(x) = x + 1$ and let $g_2(x) = x^3 + x^2 + 1$.

Consider the information bits sequence m = (1,1,0,1,1,0), Find the codeword corresponding to this sequence if $g(x) = g_1(x)g_2(x)$ is used as the generator

polynomial. $M = (1,1,0,1,1,0) \Rightarrow m(x) = x + x^4 + x^2 + x \Rightarrow k = 6$ $9(x) = 9(x)(9(x)) = (x+1)(x^2 + x^2 +$

Method1: Non Systematic
The ademord < (x) = 9(x) m(x) $=(X^{4}+X^{2}+X+1)(X^{5}+X^{4}+X^{2}+X)$ $= x^{9} + x^{8} + x^{7} + x^{6} + x^{5} + x$ => c= 1/1/1/00/0

Method2: Systematic

((X) = X m(X) + V(X)

where Y(X) = reminder [X m(X)/o

X m(X) = X (X + X + X + X = X + X)