Question \#1 [10 marks]

In the circuit shown in Fig. 1 the switch has been closed for a long time. At $t=0$ it is opened. Determine an expression for $\mathrm{v}(\mathrm{t})$ for $\mathrm{t} \geq 0$ and draw a sketch to show its variation with time.

(Fig.1)

Question \#2 [15 marks]

In the circuit shown in Fig. 2 both switches have been open for a long time. Switch S_{1} is closed first at $\mathrm{t}=0$ and then switch S 2 is closed at $\mathrm{t}=4$ seconds later. Both switches remain closed.
a) Determine an expression for $\mathrm{i}(\mathrm{t})$ for $0 \leq \mathrm{t} \leq 4 \mathrm{~s}$ and for $4 \mathrm{~s} \leq \mathrm{t} \leq \infty$.
b) Find the magnitude of current i at $\mathrm{t}=2 \mathrm{~s}$ and $\mathrm{t}=5 \mathrm{~s}$.
c) Draw a sketch to show variation of $\mathrm{i}(\mathrm{t})$ with time for $0 \leq \mathrm{t} \leq \infty$.

(Fig.2)

Question \# 3 [20 marks]

In the circuit shown (Fig.3), switch S has been closed for a long time. At $t=0$, it is opened. Find expression for $i(t)$ and $v(t)$.

(Fig.3)

