King Saud University
College of Engineering Dept. of Electrical Engineerin

EE-212: Electric Circuits
Mid-Term Exam (1)
Solution

Question \#1 [10 marks]

In the circuit shown in Fig. 1 the switch has been closed for a long time. At $\mathrm{t}=0$ it is opened. Determine an expression for $\mathrm{v}(\mathrm{t})$ for $\mathrm{t} \geq 0$ and draw a sketch to show its variation with time.

(Fig.1)

Solution:

With switch closed the current source is shorted and hence $\mathrm{V}\left(0^{-}\right)=0$.
With switch S open, converting current source to voltage source $\mathrm{V}(\infty)=4 \mathrm{~V}$.

$\tau=R C=6 \times 10^{-3} \mathrm{~S}$.
$\mathrm{V}(\mathrm{t})=4-4 \mathrm{e}^{-166.67 \mathrm{t}}$

Question \#2 [15 marks]

In the circuit shown in Fig. 2 both switches have been open for a long time. ${ }^{t}$
Switch S_{1} is closed first at $t=0$ and then switch $S 2$ is closed at $t=4$ seconds later. Both switches remain closed.
a) Determine an expression for $i(t)$ for $0 \leq t \leq 4 s$ and for $4 s \leq t \leq \infty$.
b) Find the magnitude of current i at $\mathrm{t}=2 \mathrm{~s}$ and $\mathrm{t}=5 \mathrm{~s}$.
c) Draw a sketch to show variation of $\mathrm{i}(\mathrm{t})$ with time for $0 \leq \mathrm{t} \leq \infty$.

(Fig.2)

Solution:

a) With switch S1 closed,
$\mathrm{IV}=0, \mathrm{FV}=30 /(6+3)=3.33 \mathrm{~A} \quad$ Therefore $\mathrm{I}(\mathrm{t})=3.33-3.33 \mathrm{e}^{-\mathrm{t} / \tau}$ where $\tau=\mathrm{L} / \mathrm{R}=5 / 9=0.55 \mathrm{~S}$.
Therefore the expression for current is

$$
i(t)=3.33-3.33 e^{-1.8 t} \quad 0 \leq t \leq 4
$$

When switch S_{2} closed at $t=4 S$ the value of $i(4)$ is calculated by substituting $t=4 S$ in the expression for $\mathrm{i}(\mathrm{t})$ to get $\mathrm{i}(4)=3.33-3.33 \mathrm{e}-1.8 \times 4=3.33 \mathrm{~A}$, (approximately). This will be the initial value when switch S_{2} is closed at $t=4 \mathrm{~S}$.
By obtaining Thevenin equivalent circuit, the circuit becomes series as shown below

The final value of current is $10 /(2+3)=2 \mathrm{~A}$, and $\tau=5 / 5=1 \mathrm{~S}$. The expression for current is

$$
\mathrm{i}(\mathrm{t})=3.33 \mathrm{e}^{-(\mathrm{t}-4) / \tau}=3.33 \mathrm{e}^{-(\mathrm{t}-4)} \quad 4 \leq \mathrm{t} \leq \infty
$$

Notice since 4 s of time is already passed we subtract it from t in the expression.
b) At $\mathrm{t}=2, \mathrm{i}=3.33-3.33 \mathrm{e}^{-1.8 \times 2}=3.3 \mathrm{~A}$ and $\mathrm{At} \mathrm{t}=5, \mathrm{i}=3.33 \mathrm{e}^{-(5-4)}=1.23 \mathrm{~A}$

Notice we substitute in different expressions depending on the value of t.
3.33 A
1.23 A

Question \#3 [20 marks]

In the circuit shown (Fig.3), switch S has been closed for a long time. At $t=0$, it is opened. Find expression for $i(t)$ and $v(t)$.

(Fig.3)

Solution:

With switch S closed for a long time the capacitor is open and fully charged $18 \mathrm{~V}(6 \Omega$ and 4Ω voltage divider). The inductor current will be $30 /(4+6)=3 \mathrm{~A}$. These will be the initial values when switch is open. When switch is open the circuit is series.

Series circuit with initial conditions
The differential equation for this circuit from $V R+V L+V C=0$ is:
$\frac{d^{2} I(t)}{d^{2} t}+\frac{R}{L} \frac{d I(t)}{d t}+\frac{1}{L C} I(t)=0$
$\frac{d^{2} I(t)}{d^{2} t}+18 \frac{d I(t)}{d t}+180 I(t)=0$
$m^{2}+18 m+180=0$
$(m+10)(m+8)=0$
$m=10, m=8$
Assume solution $\mathrm{I}(\mathrm{t})=\mathrm{Ae}^{-10 \mathrm{t}}+\mathrm{Be}^{-8 \mathrm{t}}$
Applying initial conditions,
$\mathrm{I}(0)=3=\mathrm{A}+\mathrm{B}$
$\frac{d I(t)}{d t}=-10 A e^{-10 t}-8 B e^{-8 t}=-10 \mathrm{~A}-8 \mathrm{~B}$ at $\mathrm{t}=0$.
But $\frac{d I(t)}{d t}$ at $\mathrm{t}=0$ is equal to $\mathrm{V}_{\mathrm{L}}(0) / \mathrm{L}$
From the series circuit $\mathrm{V}_{\mathrm{L}}\left(0^{+}\right)=18-3 \times 6-3 \times 3=-9 \mathrm{~V}$. Therefore $\frac{d I(t)}{d t}=-9 / 0.5=-18$
Therefore $-10 \mathrm{~A}-8 \mathrm{~B}=-18$
But $A+B=3$. Therefore $A=-3$ and $B=6$. Therefore $I(t)=6 e^{-8 t}-3 e^{-10 t}$
$\mathrm{V}(\mathrm{t})$ is across the inductor, therefore $\mathrm{V}(\mathrm{t})=\mathrm{LdI}(\mathrm{t}) / \mathrm{dt}=0.5 \times\left(-48 \mathrm{e}^{-8 \mathrm{t}}+30 \mathrm{e}^{-10 \mathrm{t}}\right)$
$\mathrm{V}(\mathrm{t})=15 \mathrm{e}^{-10 \mathrm{t}}-24 \mathrm{e}^{-8 \mathrm{t}}$
Check: $\mathrm{V}_{\mathrm{L}}(0)=15-24=-9$

