Answer All Questions.

Question \#1

The switch in Figure (1) has been closed for a long time. At $t=0$, it is opened
a) Find I_{L} for $t<0$.
b) Just after the switch is opened find, $\mathrm{I}_{\mathrm{L}}\left(0^{+}\right)$
c) Find $I_{L}(\infty)$
d) Derive an expression for $I_{L}(t)$ for $t>0$
e) Sketch $I_{L}(t)$ against time.
20Ω

Fig. (1)

Question \#2

In the circuit shown in Figure (2), the switch has been closed for a long time. At $\mathrm{t}=0$ it is opened. Find $\mathrm{V}_{\mathrm{C}}(\mathrm{t})$ for $\mathrm{t}>0$.

Fig. (2)

Question \#3

A) For the circuit shown in Figure (3), find the coupling coefficient and $V(t)$.

Fig. (3)
B) For the following Laplace transform functions $F(s)$ find the corresponding $f(t)$
i) $\quad F(s)=\frac{s+3}{(s+1)(s+2)}$
ii) $\quad F(s)=\frac{4}{(s+2)(s+1)^{2}}$
iii) $\quad F(s)=\frac{10}{(s+3)\left(s^{2}+6 s+10\right)}$

Question \#4

A) An ideal voltage source $\mathrm{V}_{\mathrm{S}}=100 \cos (\omega \mathrm{t}) \mathrm{V}$, where ω is variable, is applied to a series $R L C$ circuit with $\mathrm{C}=0.25 \mu \mathrm{~F}$. At resonance $\left(\omega=\omega_{0}\right)$, the circuit current is $\mathrm{I}=1 \cos \left(\omega_{0} \mathrm{t}\right) \mathrm{A}$. When $\omega=5200 \mathrm{rad} / \mathrm{s}, \mathrm{I}=(1 / \sqrt{2}) \cos \left(5200-45^{\circ}\right) \mathrm{A}$.

Determine:-
i) R
ii) L
iii) Resonant frequency ω_{0}
iv) Bandwidth
v) Quality factor
B) Obtain the transfer function $\mathrm{Vo} / \mathrm{V}_{\mathrm{I}}$ of the circuit in Figure (4). What type of filter is this circuit? Give its cut-off frequency.

Fig. (4)

Question \#5

A) Obtain the Z parameters for the network shown in Figure (4).

Fig. (5)
B) A two port circuit has the following y parameters

$$
y_{11}=0.5 \mathrm{~S} \quad y_{12}=y_{21}=-0.4 \mathrm{~S} \quad y_{22}=0.6 \mathrm{~S}
$$

If a $2-\Omega$ load resistance is connected to port 2 , determine the ratio V_{2} / V_{1} and I_{2} / I_{1}.
C) On the attached graph paper, construct the Bode magnitude plot for

$$
H(s)=\frac{40(s+1)}{(s+20)(s+100)}
$$

