KING FAHD UNIVERSITY OF PETROLEUM AND MINERALS

ELECTRICAL ENGINEERING DEPARTMENT

Probabilistic Methods in Electrical Engineering
EE 315
Semester 071
FIRST MAJOR

DATE : November 6, 2007
TIME:6:30-8:00 pm

Name: \qquad
ID : \qquad

Section \# : \qquad 04

QUESTION	MARK
1	$/ \mathbf{2 0}$
2	$/ \mathbf{2 0}$
3	$/ \mathbf{1 0}$
4	$/ \mathbf{1 0}$
TOTAL	$/ \mathbf{6 0}$

Problem 1:

The lifetime (in years) of a device behaves as a random variable with exponential density

$$
f_{X}(x)=e^{-x} u(x) .
$$

Let A be the event "device lifetime greater than 5 years", and B be the event "device lifetime greater than 10 years". Find:
a) $P(A \cap B)$.
b) $P(A \cap \bar{B})$.
c) $P(A \cup B)$.
d) $P(B \mid A)$.

Problem 2:

A random variable X has a propbabilty density function (pdf) defined by:

$$
f_{X}(x)= \begin{cases}c x(1-x), & 0 \leq x \leq 1 \\ 0, & \text { elsewhere }\end{cases}
$$

1. Find c such that $f_{X}(x)$ is a valid pdf.
2. Find $F_{X}(x)$ and sketch it.
3. Find b such that $P[|X|<b]=\frac{1}{2}$.
4. Find $P[X>0.5 \mid 0<X<1]$.

Problem 3:

A random voltage V has the density function $f_{V}(v)=\frac{1}{4} u(v) e^{-v / 4}$
a) Calculate the mean value of V .
b) If the voltage is passed through a device that generates the voltage $Y=V^{3}$, then calculate the expected value of Y .

Problem 4:

An audio amplifier contains six transistors. A technician has determined that two transistors are defective, but he does not know which two. The technician removes three transistors at random and inspects them. Let \mathbf{X} be the number of defective transistors that the technician finds, where \mathbf{X} may be 0,1 , or 2 .

1. Find the probability density function for \mathbf{X}.
2. Now if the technician decides to inspect the six transistors by picking one transistor at a time and inspecting it, what is the probability that he will be successful in finding a defective transistor from the second inspection?
