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ABSTRACT 

A structure theorem for Banach spaces whose duals are L1 spaces, is proved. 

The purpose of  this note is to settle a question left open in [2, p. 66] as well 
as a related problem contained implicitly in [3]. A Banach space X is called 
an ,/Vz space [2] if there is a net {B~} of finite-dimensional subspaces of X directed 
by inclusion such that X = U~B~ and every B~ is a ~ space. It was proved in 
[2, p. 66] that if a Banach space is an ,W'~ space for every 2 > 1 then X* is an 
LI(/~) space for some measure/1. Here we shall prove that also the converse is 
true. In [3] Michael and Petczyfiski studied Banach spaces X which have the 
following property: For  every e > 0 and every finite set A in X there is an integer n 
and an operator T : I ~  ~ X such that 
for every y E 1~ and such that the distance of x from T l~ is < e for every x s A. 

Here !~  denotes the space of  all the n-tuples of  real numbers y = (21,22,..., 2n) 
with [] y [] = max, ]2i ]. These spaces were called in [3] a o~ spaces. Since i :  is 

a ~1 space for every n it follows easily that an a °° is an ,W~ space for every 2 > 1. 
Here we show that the class of  a ~o spaces coincides with the class of  the spaces 
which are ~ x  for every 2 > 1. 

We consider only Banach spaces over the reals, but our result and its proof  
are valid also in the complex case. We state now our main result. 

T , ~ O ~ M  1. Le t  X be a Banach space. Then the fo l lowing three statements 
are equivalent, 

(i) X* is isometric to the space Ll(Iz) for  some measure IZ. 

(ii) X is an ,/V~ space for  every ;t > 1. 

(iii) X is an a ~° space. 

For  spaces X whose unit cell has at least one extreme point Theorem 1 can be 

also easily deduced from the results of  [1]. The proof  of Theorem 1 presented 
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here is, however, shorter than the arguments given in [1] from which the special 
case of Theorem 1 follows. 

A list of  other properties equivalent to property (i) of Theorem 1 is given in 
[2, Theorem 6.1]. 

By combining the results of 1"3] with Theorem 1 we get immediately the fol- 
lowing stronger version of Theorem 1 for separable spaces. 

THEOREM 2. Let X be a separable Banach space. Then the following two 
statements are equivalent. 

O) X*  is isometric to the space Ll(lO for  some measure g. 
(ii) X has a monotone basis {e~}i~l such that for  every n the subspace of X 

spanned by {ei}~% 1 is isometric to 1~ 
We pass to the proof of Theorem 1. As we have already remarked we need 

only to show that (i) ~ (iii). Let X satisfy (i) of Theorem 1, let A be a finite subset 
of X and let 0 < e < 1. In the definition of an a °° space it is clearly enough to 
consider sets A with It xl /--  1 for every x e A (otherwise replace x e A by x/ll x II 
and~  by e/maxx~a II x ]l). so we assume that II ~ II-- 1 for every x ~ A and let B 
be the subspace of X spanned by A. Let E o be the set of exposed points of the 
unit cell of B*. Let J~o be the set obtained from Eo by identifying every f with 
- f ,  and let ff be the quotient map ~b:Eo ~/~o. We metrize E o by putting 

d(dpf, dpg) = rain ( l l f -  g II, Ilf+ gll). Since B is finite-dimensional the metric 
space/~o is totally bounded. Hence, there is a finite number of subsets {Gl}~ffi i of 
/~o such that G~n Gj = ~  for i ~ j ,  E o = 1,.J7=1G~ and Gl has for every i a non 
empty interior and a diameter < e. Since e < 1 there is for every i a subset G~ of Eo 

such that c~- l Gi = Gi U - G,, G, n - G, = ~ and IIf-gll < ~ f o r  every f ,  g e G,. 
For every i pick an f~ E G~ such that fffi is an interior point of G~ and let x~ e B 

be such that A(x,)= II x, II = IIf, II = ~ and f ( x , ) <  1 for every f ~f~ in B* with 

Ilfl[ = 
Let E = [,.J~= 1 Gt and let l °°(E) be the Banach space of  all real-valued bounded 

functions on E with the sup norm. Let the operator U:B-- .  l°°(E) be defined 
by U b ( f ) = f ( b ) ,  b e B, f e  E. Since the unit cell of B* is the closed convex hull 
of E u - E we get that U is an isometry. From our choice of the x~ and f~ it 
follows that there is a c5 > 0 such that If(x,) I < 1 -  a for every i and every 
f ~ E ~ G~. We assume as we may that fi < min (2]3, 1 - t). 

Let y~ e l°°(E), 1 < i < n, be defined by Yt(f)  = 1 if f e  Gl and Yl( f )  = 0 if 
f e E ~  G,. By our choice of fi we get that II -Wx,-y, 11--< ~-Xn fact, 
if f ~  E N G~ then 

] ~ - ~ U x , ( f ) _  y,( f)]  = la-~f(x,)l _< ~ - 1  --  1, 

while for f ~  G~ we get (since ~-~f(x~) ~ (1 - ~)/~ ~_ 1) 

I a - l U x , ( f ) -  Y,(f)I = I~- '  f (x,) - 11~ ~-~ - 1. 
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Since X* is an LI space there is (see e.g. [2, Theorem 6.1 (3)]) an operator 
T from l~(E) into X whose restriction to UB is equal to U-1 and with norm 
II T II < (1 - ~ + ~/2)/(1 - ~) We have, in particular, that for every 1 < i < n 

Il l- 'x,-  Ty, ll = I I ~ - I T U x ,  - Ty,[I---IlTllll~-'ux,-y,l[ < = ~ - I _  1 +el2, 

and hence since II x, II-- 1 we get that II Zy, II >-- 1 - ~ / 2  
Let Y be the subspace of I~(E) spanned by (Yt}~'=l. Clearly, Y is isometric 

to 1~ We claim that for every y e Y 

(1 - 2n)II y II < II Ty  I[ < (1 + e)H Y I[. 

That II Z II < 1 + ~  follows from our choice of II Z 11 <observe that we assume 
that 6 < 2/3). Let now y = ]~=12,y,  e Y with 11 y II = 1 Without loss of generality 
we may assume that 21 = 1. Let z = Yl - ~=22~y~. 

Then II T(y + z)II = 2 II Tyl II > 2 - ~  and hence since I1Zz II < 1 + ~  we get 
that 11 Ty II > 1 - 2~ 

In order to conclude the proof that X is an a ~ space it is now enough to show 
that for every x e B with fix I!--1 there is a y e Y with II T y -  x II < 2~ Take 
y = ~7=~f~(x)y, E Y. Then I1Y - Ux II < ~ (recall that the diameter of each G, 
is < ~) and hence 

11 r y -  xll < 11TII HY-  U~II z~(1 + 8)<2~ 

and this concludes the proof. 
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