The Divergence Theorem

Mongi BLEL

King Saud University

March 25, 2024

The Divergence Theorem

Let Q be a solid region bounded by a closed surface S oriented by a normal vector directed outward and if \mathbf{F} is vector field \mathscr{C}^1 . Then

$$\iint_{S} \mathbf{F}.\mathbf{n}dS = \iiint_{Q} \nabla.\mathbf{F}dV = \iiint_{Q} \operatorname{div}\mathbf{F}dV. \quad (1)$$
 utward flux integral of local flux

total outward flux int

over the interior S through the surface S

Compute the outward flux $\iint_S \mathbf{F.n} dS$ of the vector field $\mathbf{F} = (yz - 3x)\mathbf{i} + (x - 2y)\mathbf{j} + (2 + z^2)\mathbf{k}$ through S, which is the surface of the ellipsoid $2x^2 + 2y^2 + z^2 = 8$ lying above the plane z = 0.

Solution The surface S is not closed (is not the boundary of the considered solid), so we cannot use divergence theorem.

Add a second surface S' so that $S \cup S'$ is a closed surface with interior D. We can take the surface S' the disc $x^2 + y^2 \le 4$ in the xy-plane

$$\iint_{S} \mathbf{F}.\mathbf{n} dS + \iint_{S'} \mathbf{F}.\mathbf{n}' dS = \iiint_{D} \operatorname{div} \mathbf{F} dV.$$

Hence

$$\iint_{S} \mathbf{F}.\mathbf{n}dS = \iiint_{D} \operatorname{div} \mathbf{F}dV - \iint_{S'} \mathbf{F}.\mathbf{n}'dS.$$

$$\operatorname{div}\mathbf{F} = -5 + 2z,$$

$$\iiint_{D} \operatorname{div} \mathbf{F} dV = \iiint_{D} (-5 + 2z) dV$$

$$= \int_{0}^{2\pi} \int_{0}^{2} \int_{0}^{\sqrt{8-2r^{2}}} (-5 + 2z) r dz dr d\theta$$

$$= 2\pi \int_{0}^{2} (-5(8 - 2r^{2}) + (8 - 2r^{2})^{2}) r dr$$

$$= 2\pi \int_{0}^{2} (24r - 22r^{3} + 4r^{5}) dr = 64\pi.$$

$$-\iint_{S'} \mathbf{F} \cdot \mathbf{n}' dS = -\iint_{S'} \mathbf{F} \cdot (-\mathbf{k}) dS = \iint_{S'} (2 + z^2) dS$$
$$= \iint_{S'} 2dS = 8\pi.$$

Hence

$$\iint_{S} \mathbf{F}.\mathbf{n}dS = 64\pi + 8\pi = 72\pi.$$

Use the Divergence Theorem to evaluate the surface integral

$$\iint_{\mathcal{E}} \mathbf{F} \cdot d\mathbf{S} \text{ of the vector field } \mathbf{F}(x, y, z) = (x^3, y^3, z^3), \text{ where } S$$

is the surface of a solid bounded by the cone $x^2+y^2-z^2=0$ and the plane z=1.

Applying the Divergence Theorem, we can write:

$$I = \iint_{S} \mathbf{F} \cdot d\mathbf{S} = \iiint_{G} (\nabla \cdot \mathbf{F}) dV$$
$$= \iiint_{G} \left[\frac{\partial}{\partial x} (x^{3}) + \frac{\partial}{\partial y} (y^{3}) + \frac{\partial}{\partial z} (z^{3}) \right] dxdydz$$
$$= 3 \iiint_{G} (x^{2} + y^{2} + z^{2}) dxdydz.$$

By changing to cylindrical coordinates, we have

$$I = 3 \iiint_G (x^2 + y^2 + z^2) dxdydz$$

$$= 3 \iint_0^1 dz \int_0^{2\pi} d\varphi \int_0^z (r^2 + z^2) r dr = 6\pi \int_0^1 \left[\left(\frac{r^4}{4} + \frac{z^2 r^2}{2} \right) \Big|_{r=0}^z \right] dz$$

$$= 6\pi \int_0^1 \frac{3z^4}{4} dz = \frac{9\pi}{2} \left[\left(\frac{z^5}{5} \right) \Big|_0^1 \right] = \frac{9\pi}{10}.$$

Evaluate the surface integral
$$\iint_S x^3 dy dz + y^3 dx dz + z^3 dx dy$$
, where S is the surface of the sphere $x^2 + y^2 + z^2 = a^2$ that has

upward orientation.

Using the Divergence Theorem, we can write:

$$I = \iint_{S} x^{3} dydz + y^{3} dxdz + z^{3} dxdy = \iiint_{G} (3x^{2} + 3y^{2} + 3z^{2}) dxdydz$$
$$= 3 \iiint_{S} (x^{2} + y^{2} + z^{2}) dxdydz.$$

By changing to spherical coordinates, we have

$$I = 3 \iiint_G (x^2 + y^2 + z^2) dxdydz = 3 \iiint_G r^2 \cdot r^2 \sin \theta drd\psi d\theta$$
$$= 3 \int_0^{2\pi} d\psi \int_0^{\pi} \sin \theta d\theta \int_0^a r^4 dr$$
$$= 3 \cdot 2\pi \cdot \left[(-\cos \theta) \Big|_0^{\pi} \right] \cdot \left[\left(\frac{r^5}{5} \right) \Big|_0^a \right] = \frac{12\pi a^5}{5}.$$

Using the Divergence Theorem calculate the surface integral $\iint\limits_{\mathcal{S}} \mathbf{F} \cdot d\mathbf{S} \text{ of the vector field } \mathbf{F}(x,y,z) = (2xy,8xz,4yz) \,, \text{ where is the surface of tetrahedron with vertices } A = (0,0,0) \,,$ $B = (1,0,0) \,, \ C = (0,1,0) \,, \ D = (0,0,1).$

By Divergence Theorem,

$$I = \iint_{S} \mathbf{F} \cdot d\mathbf{S} = \iiint_{G} (\nabla \cdot \mathbf{F}) dV$$
$$= \iiint_{G} \left[\frac{\partial}{\partial x} (2xy) + \frac{\partial}{\partial y} (8xz) + \frac{\partial}{\partial z} (4yz) \right] dV$$
$$= \iiint_{G} (2y + 0 + 4y) dx dy dz = 6 \iiint_{G} y dx dy dz.$$

$$I = 6 \iiint_{G} y dx dy dz = 6 \int_{0}^{1} dx \int_{0}^{1-x} dy \int_{0}^{1-x-y} y dz$$

$$= 6 \int_{0}^{1} dx \int_{0}^{1-x} (1-x-y) y dy = 6 \int_{0}^{1} dx \int_{0}^{1-x} [y(1-x)-y^{2}] dy$$

$$= 6 \int_{0}^{1} \left[\left((1-x) \frac{y^{2}}{2} - \frac{y^{3}}{3} \right) \Big|_{y=0}^{1-x} \right] dx$$

$$= 6 \int_{0}^{1} \left[\frac{(1-x)^{3}}{2} - \frac{(1-x)^{3}}{3} \right] dx$$

$$= 6 \cdot \frac{1}{6} \int_{0}^{1} (1-x)^{3} dx = \frac{1}{4}.$$

Use the Divergence Theorem to evaluate the surface integral $\iint \mathbf{F} \cdot d\mathbf{S}$ of the vector field $\mathbf{F}(x, y, z) = (x, y, z)$, where S is

the surface of the solid bounded by the cylinder $x^2 + y^2 = a^2$ and the planes z = -1 and z = 1.

Using the Divergence Theorem, we can have:

$$\iint_{S} \mathbf{F} \cdot d\mathbf{S} = \iiint_{G} (\nabla \cdot \mathbf{F}) dV$$

$$= \iiint_{G} \left[\frac{\partial}{\partial x} (x) + \frac{\partial}{\partial y} (y) + \frac{\partial}{\partial z} (z) \right] dx dy dz$$

$$= \iiint_{G} (1 + 1 + 1) dx dy dz = 3 \iiint_{G} dx dy dz.$$

By switching to cylindrical coordinates, we have

$$I = 3 \iiint_G dx dy dz = 3 \int_{-1}^{1} dz \int_{0}^{2\pi} d\varphi \int_{0}^{a} r dr$$
$$= 3 \cdot 2 \cdot 2\pi \cdot \left[\left(\frac{r^2}{2} \right) \Big|_{0}^{a} \right] = 6\pi a^2.$$