Introduction to Real Analysis Differentiation

Ibraheem Alolyan

King Saud University

Table of Contents

3 L'Hopital's Rule

Ibraheem Alolyan Real Analysis

э

Derivative

Definition

Let $f: I \to \mathbb{R}$ (where I is an interval) and $c \in I$ then if the limit

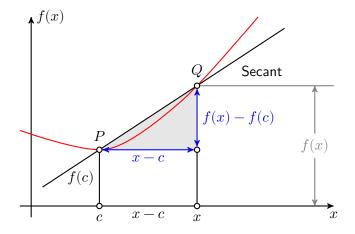
$$\lim_{x \to c} \frac{f(x) - f(c)}{x - c}$$

exists, it is called the derivative of f at c.

$$f'(c) = \lim_{x \to c} \frac{f(x) - f(c)}{x - c}$$

Image: A matrix and a matrix

∍⊳



Mean Value Theorem L'Hopital's Rule Taylor's Theorem

Derivative

Examples

$$f(x) = k$$

٠

Mean Value Theorem L'Hopital's Rule Taylor's Theorem

Derivative

Examples

.

$$f(x)=x^n, n\in \mathbb{N}$$

Mean Value Theorem L'Hopital's Rule Taylor's Theorem

Derivative

Examples

$$f(x) = |x|$$

٠

If f is defined on I = [a, b] then the derivatives at a and b are

$$f'(a) = \lim_{x \to a^+} \frac{f(x) - f(a)}{x - a}$$
$$f'(b) = \lim_{x \to b^-} \frac{f(x) - f(b)}{x - b}$$

If $f:(a,b)\to \mathbb{R}$ is differentiable then

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

*ロ * *母 * * ヨ * * ヨ *

Derivative Mean Value Theorem

L'Hopital's Rule Taylor's Theorem

Derivative

Examples

.

 $f(x) = \sin x$

・ロト ・四ト ・ヨト ・ヨト

Derivative Mean Value Theorem L'Hopital's Rule

Derivative

Theorem

.

If the function $f:I\longrightarrow \mathbb{R}$ is differentiable at $c\in I$, then it is continuous at c.

æ

イロト イヨト イヨト イヨト

Derivative

Theorem

If the functions $f,g:I\to \mathbb{R}$ are differentiable at $c\in I$, then

•
$$f + g$$
 is differentiable at c and

$$(g+f)'(c) = g'(c) + f'(c)$$

 $\ensuremath{ @ \ } fg \ensuremath{ \ } sdifferentiable \ensuremath{ at \ } c \ensuremath{ \ } and \ensuremath{ \ } and \ensuremath{ \ } c \ensuremath{ \ } and \ensuremath{ \ } c \ensuremath{ \ } and \ensuremath{ \ } c \ensuremath{ \ } and \ensu$

$$(fg)'(c) = f(c)g'(c) + f'(c)g(c)$$

3 If $g(c) \neq 0$ then $\frac{f}{q}$ is differentiable at c and

$$\left(\frac{f}{g}\right)\,{}'(c)=\frac{f\,{}'(c)g(c)-f(c)g\,{}'(c)}{g(c)^2}$$

(日)

If the function $f:I\longrightarrow \mathbb{R}$ is differentiable at $c\in I$ then 3 $f^{\,2}$ is differentiable at c and

$$(f^2)'(c) = 2f(c)f'(c)$$

2) f^n is differentiable at c and

$$(f^{n})'(c) = nf^{n-1}(c)f'(c)$$

(日)

Mean Value Theorem L'Hopital's Rule Taylor's Theorem

Derivative

Exai	nples x^n	
1	x^n	
2	p(x)	
3	x^{-n}	

Mean Value Theorem L'Hopital's Rule Taylor's Theorem

Derivative

Theorem

Let I, J be intervals, $f: I \to \mathbb{R}$ and $f(I) \subset J$, $g: J \to \mathbb{R}$. If f is differentiable at $c \in I$ and g is differentiable at f(c) then $gof: I \to \mathbb{R}$ is differentiable at c and

$$(gof)\,{}'(c)=g\,{}'(f(c))\cdot f\,{}'(c)$$

< A > <

lf

$$y = f(x), \qquad w = g(y)$$

then

$$\frac{dw}{dx} = \frac{dw}{dy} \cdot \frac{dy}{dx}$$

Derivative Mean Value Theorem

Derivative

Examples

0

2

3

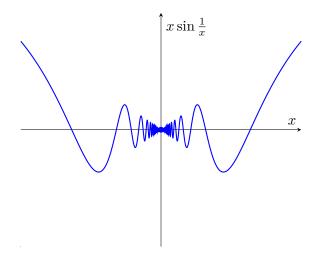
 $f(x) = \begin{cases} \sin\frac{1}{x} & x \neq 0\\ 0 & x = 0 \end{cases}$

$$g(x) = \begin{cases} x \sin \frac{1}{x} & x \neq 0\\ 0 & x = 0 \end{cases}$$

$$h(x) = \begin{cases} x^2 \sin \frac{1}{x} & x \neq 0\\ 0 & x = 0 \end{cases}$$

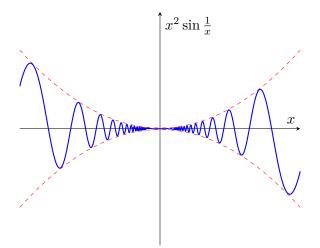
æ

イロト イヨト イヨト イヨト



< ロ > < 回 > < 回 > < 回 > < 回 > <</p>

Ξ.



*ロ * *母 * * ヨ * * ヨ *

Derivative

Theorem

If $f: I \to \mathbb{R}$ is injective and continuous on the interval I and if f is differentiable at $c \in I$ then f^{-1} is differentiable at d = f(c) iff $f'(c) \neq 0$ $(f^{-1})'(d) = \frac{1}{f'(c)}$ or

$$(f^{-1})'(d) = \frac{1}{f'(f^{-1}(d))}$$

• (日本)

3)) B

Derivative

Examples

.

The function $f:\mathbb{R}\rightarrow\mathbb{R}$

$$f(x) = x^3$$

is $1-1 \ \mathrm{and} \ \mathrm{differentiable}, \ \mathrm{find}$

 $(f^{-1})\,{}'(8)$

æ

イロト イヨト イヨト イヨト

Derivative

Examples

.

The function
$$f: [-\pi/2, \pi/2] \to \mathbb{R}$$

$$f(x) = \sin(x)$$

is 1-1 and differentiable, find $\left(f^{-1}\right){}'(x)$

æ

イロト イヨト イヨト イヨト

Local Extrema

Definition

The function $f:D\to\mathbb{R}$ has a local maximum at $c\in D$ if there is a neighborhood $U=(c-\delta,c+\delta)$ such that

$$f(x) \leq f(c) \qquad \forall x \in U \cap D$$

and it has a local minimum at $c\in D$ if there is a neighborhood $U=(c-\delta,c+\delta)$ such that

$$f(x) \ge f(c) \qquad \forall x \in U \cap D$$

▲ 同 ▶ ▲ 王

Extremum

Theorem

.

If f has an extremum on $\left(a,b\right)$ at c and if f is differentiable at c then

$$f^{\,\prime}(c)=0$$

æ

Image: A matrix and a matrix

Critical Point

Definition

- \boldsymbol{c} is a critical point of \boldsymbol{f} if
 - $\ \, \bullet \ \, f \ \, {\rm is \ not \ \, differentiable \ at \ c}$

2 or
$$f'(c) = 0$$

If the function $f:(a,b)\to \mathbb{R}$ has a local extremem at c then c is a critical point of f

< □ > <

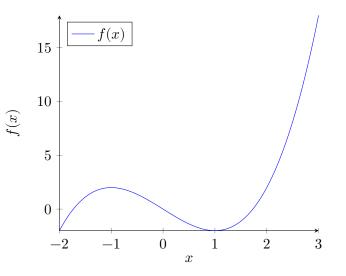
Extremum

Examples

.

 $f:[-2,3]\to \mathbb{R}$ $f(x)=x^3-3x$

イロン イヨン イヨン イヨン



Rolle's Theorem

Theorem

If $f:[a,b]\to\mathbb{R}$ is continuous on [a,b], differentiable on (a,b) and f(a)=f(b) then there is $c\in(a,b)$ such that

 $f^{\,\prime}(c)=0$

• □ ▶ • < </p>
• □ ▶ • < </p>

∃ >

Rolle's Theorem

Examples

.

 $f:[1,5] \rightarrow \mathbb{R}$ $f(x) = -x^2 + 6x - 6$

æ

《口》《聞》《臣》《臣》

Mean Value Theorem

Theorem

If $f:[a,b]\to\mathbb{R}$ is continuous on [a,b], differentiable on (a,b) then there is $c\in(a,b)$ such that

$$f(b) - f(a) = f'(c)(b - a)$$

∍⊳

Mean Value Theorem

Examples

.

$$f:[0,2]\to \mathbb{R}$$

$$f(x) = x^3$$

æ

イロト イヨト イヨト イヨト

Mean Value Theorem

Examples

Prove that

 $\sin x \le x \qquad \forall x \ge 0$

æ

イロト イヨト イヨト イヨト

Applications of Mean Value Theorem

Theorem

If $f:[a,b]\to \mathbb{R}$ is continuous on [a,b] and differentiable on (a,b) then

 ${\rm \bigcirc} \ \, {\rm If} \ f^{\,\prime}(x)=0 \ {\rm for} \ {\rm all} \ x\in(a,b) \ {\rm then} \ f \ {\rm is \ constant \ on} \ [a,b]$

2 If $f'(x) \neq 0$ for all $x \in (a, b)$ then f is injective on [a, b]

イロト イポト イヨト イヨト

Applications of Mean Value Theorem

Theorem

If $f:[a,b]\to \mathbb{R}$ is continuous on [a,b] and differentiable on (a,b) then

- ${\rm \bigcirc} \ \, {\rm If} \ f'(x)\geq 0 \ \, {\rm for \ \, all} \ x\in (a,b) \ \, {\rm then} \ f \ \, {\rm is \ increasing \ on} \ [a,b]$
- $\begin{tabular}{ll} \hline \begin{tabular}{ll} f'(x) > 0 \mbox{ for all } x \in (a,b) \mbox{ then } f \mbox{ is strictly increasing on } \\ [a,b] \end{tabular} \end{tabular} \end{tabular}$
- $\ \, {\rm if} \ f'(x)\leq 0 \ {\rm for \ all} \ x\in (a,b) \ {\rm then} \ f \ {\rm is \ decreasing \ on} \ [a,b]$
- $\begin{tabular}{ll} \bullet & \mbox{If } f'(x) < 0 \mbox{ for all } x \in (a,b) \mbox{ then } f \mbox{ is strictly decreasing on } \\ & [a,b] \end{tabular} \end{tabular}$

First derivative test

Theorem

2

If $f:D\to\mathbb{R}$ is continuous and c is a critical point of f and there is an open interval $U\subset D$ which contains c such that

 $\begin{array}{ll} f'(x) < 0 & \quad \forall x \in U, x < c \\ f'(x) > 0 & \quad \forall x \in U, x > c \end{array}$

then $f(\boldsymbol{c})$ is a local minimum for f

 $f'(x) > 0 \qquad \forall x \in U, x < c$

 $f^{\,\prime}(x) < 0 \qquad \forall x \in U, x > c$

then $f(\boldsymbol{c})$ is a local maximum for f

First derivative test

Theorem - continued

 $\begin{tabular}{ll} \bullet f'(x) \mbox{ has the same sign on } x \in U-\{c\} \mbox{ then } f(c) \mbox{ is not a local extremum of } f \end{tabular}$

イロト イポト イヨト イヨト

э

Darboux

Theorem

If $f:I=[a,b]\to \mathbb{R}$ is differentiable and λ is between $f\,'(a)$ and $f\,'(b),$ i.e.,

$$f^{\,\prime}(a) < \lambda < f^{\,\prime}(b) \qquad or \qquad f^{\,\prime}(b) < \lambda < f^{\,\prime}(a)$$

then there is $c\in (a,b)$ such that

$$f^{\,\prime}(c)=\lambda$$

< □ > < □ > < □ > < □ >

3)) B

Darboux

.

Examples

$$f(x) = \left\{ \begin{array}{ll} 1 & x \ge 0 \\ 0 & x < 0 \end{array} \right.$$

L'Hopital's Rule

Theorem

Let $f,g:I\to \mathbb{R}$ be continuous I and differentiable on $I-\{c\}$ where $c\in I.$ If

$$\begin{array}{l} \bullet g'(x) \neq 0 \quad \forall x \in I - \{c\} \\ \bullet f(c) = g(c) = 0 \\ \bullet \text{ the limit } \lim_{x \to c} \frac{f'(x)}{g'(x)} \text{ exists in } \bar{\mathbb{R}} = \mathbb{R} \cup \{-\infty, \infty\} \end{array}$$

л

then

$$\lim_{x \to c} \frac{f(x)}{g(x)} = \lim_{x \to c} \frac{f'(x)}{g'(x)}$$

(日)

э

L'Hopital's Rule

Theorem

Let $f,g:[a,\infty)\to \mathbb{R}$ be differentiable on $[a,\infty)$ and suppose that

•
$$\lim_{x \to \infty} f(x) = \lim_{x \to \infty} g(x) = 0$$

•
$$g'(x) \neq 0 \quad \forall x > a$$

• the limit
$$\lim_{x \to \infty} \frac{f'(x)}{g'(x)} \text{ exists n } \overline{\mathbb{R}}$$

then

A

$$\lim_{x \to \infty} \frac{f(x)}{g(x)} = \lim_{x \to \infty} \frac{f'(x)}{g'(x)}$$

L'Hopital's Rule

Theorem

Let
$$f,g:(a,b) \to \mathbb{R}$$
 be differentiable, then if

$$\bigcirc g'(x) \neq 0 \qquad \forall x \in (a,b)$$

$$\lim_{x \to a^+} f(x) = \lim_{x \to a^+} g(x) = \infty$$

3 the limit
$$\lim_{x \to a^+} \frac{f'(x)}{g'(x)}$$
 exists in $\bar{\mathbb{R}}$

X

then

$$\lim_{x \to a^+} \frac{f(x)}{g(x)} = \lim_{x \to a^+} \frac{f'(x)}{g'(x)}$$

< ロ > < 回 > < 回 > < 回 > < 回 >

L'Hopital's Rule

There are other indeterminate forms

- -

$$\begin{array}{c} \frac{\infty}{\infty} & 1^{\infty} & 0 \cdot \infty \\ \infty - \infty & 0^0 & \infty^0 \end{array}$$

æ

イロト イ団ト イヨト イヨト

L'Hopital's Rule

Examples

.

$$\lim_{x \to 0} \frac{\cos x - 1}{x^2}$$

L'Hopital's Rule

Examples

.

$$\lim_{x \to \infty} \frac{\log(x)}{x}$$

Ibraheem Alolyan Real Analysis

L'Hopital's Rule

Examples

.

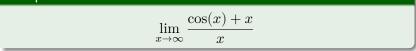
$$\lim_{x\to 0^+}(1+\frac{3}{x})^x$$

< ロ > < 回 > < 回 > < 回 > < 回 >

L'Hopital's Rule

Examples

.



Taylor's Theorem

$$f(x) = a_0 + a_1 x + a_2 x^2 + \ldots + a_n x^n$$

Taylor's Theorem

Theorem

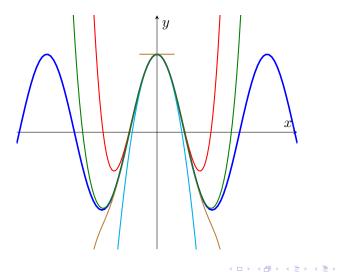
Let $f \in C^{n}[a, b]$ i.e., $f', \dots, f^{(n)}$ are continuous on [a, b] and $f^{(n)}$ is differentiable on (a, b). If $x_0 \in [a, b]$ then for every $x \in [a, b] - \{x_0\}$ there is c between x_0 and x such that

$$f(x) = f(x_0) + \frac{f'(x_0)}{1!}(x - x_0) + \frac{f''(x_0)}{2!}(x - x_0)^2 \dots$$

$$+\frac{f^{(n)}(x_0)}{n!}(x-x_0)^n+\frac{f^{(n+1)}(c)}{(n+1)!}(x-x_0)^{n+1}$$

< /□ > < 三

$\cos x$



Ξ.

Taylor's Thorem

Examples

- Approximate $f(x)=\sqrt{x+1}$ on (-1,1) by a polynomial of degree 3 at $x_0=0$
- **2** What is the error in approximation on $[0, \frac{1}{2}]$

3)) B

Taylor's Thorem

Examples

• Approximate
$$f(x) = e^x$$
 by a polynomial at $x_0 = 0$

② If we want to approximate the number e of error not exceeding 10^{-2} what is the minimum value of n?

< 17 ▶

Young's Theorem

Theorem

If $f,f\,',\ldots,f\,^{(n)}$ are all continou [a,b] and $f^{(n)}$ is differentiable at $x_0\in[a,b]$ and if $x\in[a,b]$ then

$$f(x) = f(x_0) + \frac{f'(x_0)}{1!}(x - x_0) + \frac{f''(x_0)}{2!}(x - x_0)^2 \dots$$

$$+\frac{f^{(n)}(x_0)}{n!}(x-x_0)^n+\frac{f^{(n+1)}(x_0)}{(n+1)!}(x-x_0)^{n+1}+E$$

where $\frac{E}{(x-x_0)^{n+1}} \to 0$ as $x \to x_0$

イロト イポト イヨト イヨト

э

Young's Theorem

Theorem

lf

$$f\,{}'(c)=f\,{}''(c)\ldots,f\,{}^{(m-1)}(c)=0$$

and

 $f^{\,(m)}(c)\neq 0$

then

.

- If m is odd then f(c) not a local extremum
- If m is even and $f^{(m)}(c) < 0$ then f(c) is a local maximum
- If m is ever and $f^{(m)}(c) > 0$ then f(c) is a local minimum

< ロ > < 同 > < 三 > < 三 > 、

э

Young's Theorem

Examples

.

Decide whether f(0) is an extremum value of f

 $f(x) = x \sin x$

æ

< ロ > < 同 > < 回 > < 回 > < 回 > <

Exercises

- Use the definition to find the derivative of $f(x) = \frac{1}{r}, \ x \neq 0$
- **②** Find the set of points where the function f is not differentiable

1
$$f(x) = |x^2 - 1|$$

2 $f(x) = x|x|$

 ${\small \small { o } \hspace{.1 in } {\rm If} \hspace{.1 in } g(0) = g'(0) = 0, \hspace{.1 in } {\rm find} \hspace{.1 in } f'(0) \hspace{.1 in } {\rm where } }$

$$f(x) = \begin{cases} g(x)\sin\frac{1}{x} & x \neq 0\\ 0 & x = 0 \end{cases}$$

| 4 同 ト 4 三 ト 4

Exercises

Let

$$f(x) = \begin{cases} x^2 & x \in \mathbb{Q} \\ 0 & x \in \mathbb{Q}^d \end{cases}$$

Prove that f is differentiable at x = 0, and evaluate f'(0).

- **2** If the function f satisfies $|f(x)| \le |x|^r$, where r > 1, prove that f is differentiable at x = 0.
- Let $f : \mathbb{R} \to \mathbb{R}$. The function f is even if f(-x) = f(x) for all $x \in \mathbb{R}$, and odd if f(-x) = -f(x) for all $x \in R$. If f is differentiable, prove that f' is odd when f is even, and even when f is odd.

Exercises

• Use the definition to show that $f(x) = \sqrt{x^2 + 1}$ is differentiable on \mathbb{R} , then prove that there is $c \in (0, 1)$ such that

$$\sqrt{2} - 1 = \frac{c}{\sqrt{c^2 + 1}}$$

2 If $f : \mathbb{R} \to \mathbb{R}$, and there is a real constant K > 0 such that

$$|f(x)-f(y)|\leq K|x-y|^2\quad \forall x,y\in\mathbb{R}$$

show that f is constant.

- So Prove that $|\cos x \cos y| \le |x y|$ for all $x, y \in \mathbb{R}$.
- Prove that

$$\sqrt{1+x} < 1 + \frac{x}{2} \quad \forall \ x > 0$$

Exercises

Evaluate the following limits

$$\lim_{x \to 0} \frac{\cos x - 1}{x^2} \\ \lim_{x \to 0^+} \left(1 + \frac{2}{x}\right)^x$$

Let g ∈ C²(ℝ) such that g(0) = g'(0) = 0 and g''(0) = 6. If
 f : ℝ → ℝ is continuous and defined by

$$f(x) = \frac{g(x)}{x}, \qquad x \neq 0$$

Find f(0), and discuss the differentiability of f at x = 0.

• If
$$f(x) = x^2 \sin(\frac{1}{x}), \ g(x) = \sin x$$
, show that $\lim_{x \to 0} \frac{f(x)}{g(x)}$ exists,
while $\lim_{x \to 0} \frac{f'(x)}{g'(x)}$ does not exist.

Exercises

1 Prove that for
$$x > 0$$
,

$$1 + \frac{x}{2} - \frac{x^2}{8} \le \sqrt{x+1} \le 1 + \frac{x}{2}$$

 Decide whether f(0) is and extremum value of $f(x) = \sin x - x + \frac{x^3}{6} \quad .$

문 문