Introduction to Real Analysis Differentiation

Ibraheem Alolyan

King Saud University

Table of Contents

3 L'Hopital's Rule

Ibraheem Alolyan Real Analysis

э

Derivative

Definition

Let $f: I \to \mathbb{R}$ (where I is an interval) and $c \in I$ then if the limit

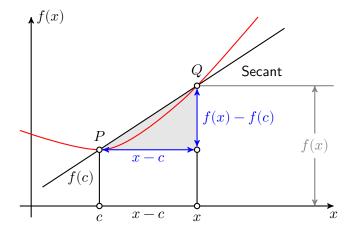
$$\lim_{x \to c} \frac{f(x) - f(c)}{x - c}$$

exists, it is called the derivative of f at c.

$$f'(c) = \lim_{x \to c} \frac{f(x) - f(c)}{x - c}$$

Image: A mathematical states and a mathem

∍⊳



Derivative

Mean Value Theorem L'Hopital's Rule Taylor's Theorem

Derivative

Examples

$$\bullet \ f(x) = k$$

$${\it 2} \ f(x)=x^n, n\in \mathbb{N}$$

3
$$f(x) = |x|$$

If f is defined on I = [a, b] then the derivatives at a, b are

$$f'(a) = \lim_{x \to a^+} \frac{f(x) - f(a)}{x - a}$$
$$f'(b) = \lim_{x \to b^-} \frac{f(x) - f(b)}{x - b}$$

If
$$f:(a,b) \to \mathbb{R}$$
 is differentiable then

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

Derivative

Mean Value Theorem L'Hopital's Rule Taylor's Theorem

Derivative

Examples

$$f(x) = \sin x$$

Derivative Mean Value Theorem L'Hopital's Rule

Derivative

Theorem

If the function $f:I\longrightarrow \mathbb{R}$ is differentiable at $c\in I$, then it is continuous at c.

æ

Derivative

Theorem

If the functions $f,g:I\to \mathbb{R}$ are differentiable at $c\in I$, then

•
$$f + g$$
 is differentiable at c and

$$(g+f)'(c) = g'(c) + f'(c)$$

 $\ensuremath{ @ \ } fg \ensuremath{ \ } sdifferentiable \ensuremath{ at \ } c \ensuremath{ \ } and \ensuremath{ \ } and \ensuremath{ \ } c \ensuremath{ \ } and \ensuremath{ \ } c \ensuremath{ \ } and \ensuremath{ \ } c \ensuremath{ \ } and \ensu$

$$(fg)'(c) = f(c)g'(c) + f'(c)g(c)$$

3 If $g(c) \neq 0$ then $\frac{f}{q}$ is differentiable at c and

$$\left(\frac{f}{g}\right)\,{}'(c)=\frac{f\,{}'(c)g(c)-f(c)g\,{}'(c)}{g(c)^2}$$

(日)

If the function $f:I\longrightarrow \mathbb{R}$ is differentiable at $c\in I$ then 3 $f^{\,2}$ is differentiable at c and

$$(f^2)'(c) = 2f(c)f'(c)$$

2) f^n is differentiable at c and

$$(f^{n})'(c) = nf^{n-1}(c)f'(c)$$

(日)

Derivative

Mean Value Theorem L'Hopital's Rule Taylor's Theorem

Derivative

Derivative

Mean Value Theorem L'Hopital's Rule Taylor's Theorem

Derivative

Theorem

Let I, J be intervals, $f: I \to \mathbb{R}$ and $f(I) \subset J$, $g: J \to \mathbb{R}$. If f is differentiable at $c \in I$ and g is differentiable at f(c) then $gof: I \to \mathbb{R}$ is differentiable at c and

$$(gof)\,{}'(c)=g\,{}'(f(c))\cdot f\,{}'(c)$$

< A > <

lf

$$y = f(x), \qquad w = g(y)$$

then

$$\frac{dw}{dx} = \frac{dw}{dy} \cdot \frac{dy}{dx}$$

Derivative Mean Value Theorem

Derivative

Examples

0

2

3

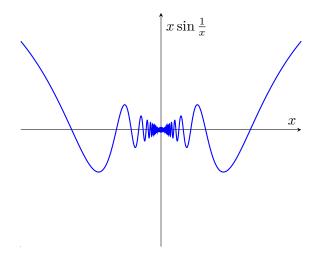
 $f(x) = \begin{cases} \sin\frac{1}{x} & x \neq 0\\ 0 & x = 0 \end{cases}$

$$g(x) = \begin{cases} x \sin \frac{1}{x} & x \neq 0\\ 0 & x = 0 \end{cases}$$

$$h(x) = \begin{cases} x^2 \sin \frac{1}{x} & x \neq 0\\ 0 & x = 0 \end{cases}$$

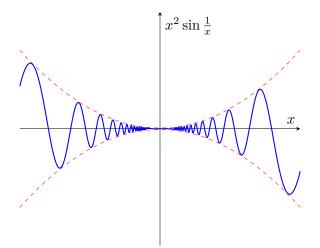
æ

イロト イヨト イヨト イヨト



< ロ > < 回 > < 回 > < 回 > < 回 > <</p>

Ξ.



*ロ * *母 * * ヨ * * ヨ *

Derivative

Theorem

If $f: I \to \mathbb{R}$ is injective and continuous on the interval I and if f is differentiable at $c \in I$ then f^{-1} is differentiable at d = f(c) iff $f'(c) \neq 0$ $(f^{-1})'(d) = \frac{1}{f'(c)}$ or

$$(f^{-1})'(d) = \frac{1}{f'(f^{-1}(d))}$$

• (日本)

3)) B

Derivative

Examples

1 The function
$$f : \mathbb{R} \to \mathbb{R}$$

$$f(x)=x^3$$

is
$$1-1$$
 and differentiable, find

 $(f^{-1})'(8)$

 $f(x) = \sin(x)$

イロト イボト イヨト イヨト

æ

is 1-1 and differentiable, find $(f^{-1})\,{}^\prime(x)$

Local Extrema

Definition

The function $f:D\to\mathbb{R}$ has a local maximum at $c\in D$ if there is a neighborhood $U=(c-\delta,c+\delta)$ such that

$$f(x) \leq f(c) \qquad \forall x \in U \cap D$$

and it has a local minimum at $c\in D$ if there is a neighborhood $U=(c-\delta,c+\delta)$ such that

$$f(x) \ge f(c) \qquad \forall x \in U \cap D$$

▲ 同 ▶ ▲ 王

Extremum

Theorem

If f has an extremum on $\left(a,b\right)$ at c and if f is differentiable at c then

$$f^{\,\prime}(c)=0$$

æ

∃ >

Image: A mathematical states and a mathem

Critical Point

Definition

- \boldsymbol{c} is a critical point of \boldsymbol{f} if
 - $\textbf{0} \quad f \text{ is not differentiable at } c$

2 or
$$f'(c) = 0$$

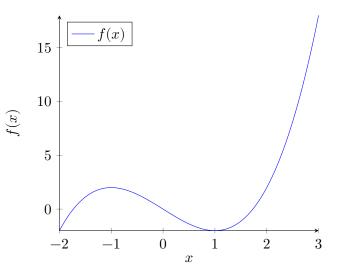
If the function $f:(a,b)\to \mathbb{R}$ has a local extremem at c then c is a critical point of f

Extremum

Examples

$$f: [-2,3] \to \mathbb{R}$$

$$f(x) = x^3 - 3x$$



Rolle's Theorem

Theorem

If $f:[a,b]\to\mathbb{R}$ is continuous on [a,b], differentiable on (a,b) and f(a)=f(b) then there is $c\in(a,b)$ such that

$$f'(c) = 0$$

Ibraheem Alolyan Real Analysis

- ◆ 同 ▶ - ◆ 三

∍⊳

Rolle's Theorem

Examples

$$f:[1,5]\to \mathbb{R}$$

$$f(x) = -x^2 + 6x - 6$$

æ

イロト イ団ト イヨト イヨト

Mean Value Theorem

Theorem

If $f:[a,b]\to\mathbb{R}$ is continuous on [a,b], differentiable on (a,b) then there is $c\in(a,b)$ such that

$$f(b)-f(a)=f^{\,\prime}(c)(b-a)$$

< (17) > <

э

Mean Value Theorem

Examples

$$f:[0,2] \rightarrow \mathbb{R}$$

$$f(x) = x^3$$

æ

-≣->

Image: A matched and A matc

Mean Value Theorem

Examples

Prove that

$$\sin x \le x \qquad \forall x \ge 0$$

æ

≣⇒

< □ > < 同 > < 回 >

Applications of Mean Value Theorem

Theorem

If $f:[a,b]\to \mathbb{R}$ is continuous on [a,b] and differentiable on (a,b) then

() If
$$f'(x) = 0$$
 for all $x \in (a,b)$ then f is constant on $[a,b]$

2 If
$$f'(x) \neq 0$$
 for all $x \in (a,b)$ then f is injective on $[a,b]$

< □ > < 同 > < 回 >

3)) B

Applications of Mean Value Theorem

Theorem

If $f:[a,b]\to \mathbb{R}$ is continuous on [a,b] and differentiable on (a,b) then

- $\label{eq:general} {\rm If} \; f'(x) \geq 0 \; {\rm for \; all} \; x \in (a,b) \; {\rm then} \; f \; {\rm is \; increasing \; on} \; [a,b]$
- $\begin{tabular}{ll} \hline \begin{tabular}{ll} f'(x) > 0 \mbox{ for all } x \in (a,b) \mbox{ then } f \mbox{ is strictly increasing on } \\ [a,b] \end{tabular} \end{tabular} \end{tabular}$
- $\ \, {\rm S} \ \, {\rm If} \ f'(x) \leq 0 \ \, {\rm for \ \, all} \ \, x \in (a,b) \ \, {\rm then} \ \, f \ \, {\rm is \ decreasing \ on} \ \, [a,b]$
- $\begin{tabular}{ll} \begin{tabular}{ll} \bullet & \end{tabular} f'(x) < 0 \mbox{ for all } x \in (a,b) \mbox{ then } f \mbox{ is strictly decreasing on } \\ & [a,b] \end{tabular} \end{tabular} \end{tabular}$

< ロ > < 同 > < 三 > < 三 > 、

First derivative test

Theorem

2

If $f:D\to\mathbb{R}$ is continuous and c is a critical point of f and there is an open interval $U\subset D$ which contains c such that

 $\begin{array}{ll} f'(x) < 0 & \quad \forall x \in U, x < c \\ f'(x) > 0 & \quad \forall x \in U, x > c \end{array}$

then $f(\boldsymbol{c})$ is a local minimum for f

 $f'(x) > 0 \qquad \forall x \in U, x < c$

 $f^{\,\prime}(x) < 0 \qquad \forall x \in U, x > c$

then $f(\boldsymbol{c})$ is a local maximum for f

First derivative test

Theorem - continued

 $\begin{tabular}{ll} \bullet f'(x) \mbox{ has the same sign on } x \in U-\{c\} \mbox{ then } f(c) \mbox{ is not a local extremum of } f \end{tabular}$

3)) B

Darboux

Theorem

If $f:I=[a,b]\to \mathbb{R}$ is differentiable and λ is between $f^{\,\prime}(a)$ and $f^{\,\prime}(b),$ i.e.,

$$f^{\,\prime}(a) < \lambda < f^{\,\prime}(b) \qquad or \qquad f^{\,\prime}(b) < \lambda < f^{\,\prime}(a)$$

then there is $c \in (a, b)$ such that

$$f'(c) = \lambda$$

Image: A math a math

∍⊳

Darboux

Examples

$$f(x) = \begin{cases} 1 & x \ge 0\\ 0 & x < 0 \end{cases}$$

L'Hopital's Rule

Theorem

Let $f,g:I\to \mathbb{R}$ be continuous I and differentiable on $I-\{c\}$ where $c\in I.$ If

$$\begin{array}{l} \bullet g'(x) \neq 0 \quad \forall x \in I - \{c\} \\ \bullet f(c) = g(c) = 0 \\ \bullet \text{ the limit } \lim_{x \to c} \frac{f'(x)}{g'(x)} \text{ exists in } \bar{\mathbb{R}} = \mathbb{R} \cup \{-\infty, \infty\} \end{array}$$

л

then

$$\lim_{x \to c} \frac{f(x)}{g(x)} = \lim_{x \to c} \frac{f'(x)}{g'(x)}$$

・ロト ・ 同ト ・ ヨト ・ ヨト

э

L'Hopital's Rule

Theorem

Let $f,g:[a,\infty)\to \mathbb{R}$ be differentiable on $[a,\infty)$ and suppose that

•
$$\lim_{x \to \infty} f(x) = \lim_{x \to \infty} g(x) = 0$$

•
$$g'(x) \neq 0 \quad \forall x > a$$

• the limit
$$\lim_{x \to \infty} \frac{f'(x)}{g'(x)} \text{ exists n } \overline{\mathbb{R}}$$

then

A

$$\lim_{x \to \infty} \frac{f(x)}{g(x)} = \lim_{x \to \infty} \frac{f'(x)}{g'(x)}$$

æ

L'Hopital's Rule

Theorem

Let
$$f,g:(a,b) \to \mathbb{R}$$
 be differentiable, then if

$$\bigcirc g'(x) \neq 0 \qquad \forall x \in (a,b)$$

$$\lim_{x \to a^+} f(x) = \lim_{x \to a^+} g(x) = \infty$$

3 the limit
$$\lim_{x \to a^+} \frac{f'(x)}{g'(x)}$$
 exists in $\bar{\mathbb{R}}$

X

then

$$\lim_{x \to a^+} \frac{f(x)}{g(x)} = \lim_{x \to a^+} \frac{f'(x)}{g'(x)}$$

< ロ > < 回 > < 回 > < 回 > < 回 >

æ

L'Hopital's Rule

There are other indeterminate forms

- -

$$\begin{array}{ccc} \frac{\infty}{\infty} & 1^{\infty} & 0 \cdot \infty \\ \infty - \infty & 0^0 & \infty^0 \end{array}$$

æ

イロト イ団ト イヨト イヨト

L'Hopital's Rule

Examples 0 $\lim_{x\to 0} \frac{\cos x - 1}{x^2}$ 2 $\lim \ \frac{\log(x)}{}$ $x \to \infty$ x3 $\lim_{x\to 0^+}(1+\frac{3}{x})^x$ 4 $\underline{\cos(x) + x}$ lim $x \rightarrow \infty$ x

æ

(日)

Taylor's Theorem

$$f(x)=a_0+a_1x+a_2x^2+\ldots+a_nx^n$$

æ

Taylor's Theorem

Theorem

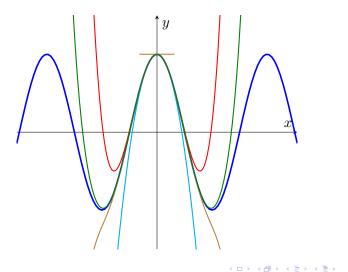
Let $f \in C^n[a, b]$ i.e., $f', \ldots, f^{(n)}$ are continuous on [a, b] and $f^{(n)}$ is differentiable on (a, b). If $x_0 \in [a, b]$ then for every $x \in [a, b] - \{x_0\}$ there is c between x_0 and x such that

$$f(x) = f(x_0) + \frac{f'(x_0)}{1!}(x - x_0) + \frac{f''(x_0)}{2!}(x - x_0)^2 \dots$$

$$+\frac{f^{(n)}(x_0)}{n!}(x-x_0)^n+\frac{f^{(n+1)}(c)}{(n+1)!}(x-x_0)^{n+1}$$

< /□ > < 三

$\cos x$



Ξ.

Taylor's Thorem

Examples

• Approximate $f(x) = \sqrt{x+1}$ on (-1,1) by a polynomial of degree 3 at $x_0 = 0$

2 What is the error in approximation on $[0, \frac{1}{2}]$

Taylor's Thorem

Examples

- Approximate $f(x) = e^x$ by a polynomial at $x_0 = 0$
- ② If we want to approximate the number e of error not exceeding 10^{-2} what is the minimum value of n?

< 4 ₽ > < Ξ

Young's Theorem

Theorem

If $f,f\,',\ldots,f\,^{(n)}$ are all continou [a,b] and $f^{(n)}$ is differentiable at $x_0\in[a,b]$ and if $x\in[a,b]$ then

$$f(x) = f(x_0) + \frac{f'(x_0)}{1!}(x - x_0) + \frac{f''(x_0)}{2!}(x - x_0)^2 \dots$$

$$+\frac{f^{(n)}(x_0)}{n!}(x-x_0)^n + \frac{f^{(n+1)}(x_0)}{(n+1)!}(x-x_0)^{n+1} + E$$
 where $\frac{E}{(x-x_0)^{n+1}} \to 0$ as $x \to x_0$

Image: A image: A

Young's Theorem

Theorem $\label{eq:f} f'(c) = f''(c) \dots, f^{(m-1)}(c) = 0$ and $\label{eq:f(m)} f^{(m)}(c) \neq 0$

then

- If m is odd then $f(\boldsymbol{c})$ not a local extremum
- If m is even and $f^{\,(m)}(c) < 0$ then f(c) is a local maximum
- If m is ever and $f^{\,(m)}(c)>0$ then f(c) is a local minimum

< ロ > < 同 > < 回 > < 回 > .

Taylor's Thorem

Examples

$$f(x) = \sin x - x + \frac{x^3}{6}$$

Ibraheem Alolyan Real Analysis

æ

-≣->

・ロト ・回ト ・ ヨト・