

Solution key

King Saud University
College of Sciences
Department of Mathematics
Semester 462 / Final Exam / MATH-244 (Linear Algebra)

Max. Marks: 40

Time: 3 hours

Solution of Question 1: Correct choices:

(i) If square of a matrix A is zero matrix, then $I - A$ is equal to:

a) 0 b) $(A - I)^{-1}$ c) $\checkmark (A + I)^{-1}$ d) $A + I$ [Mark 1]

(ii) If A is a square matrix of order 3 with $\det(A) = 2$, then $\det(\det(\frac{1}{\det(A)} A^3) A^{-1})$ is equal to:

a) 1/4 b) $\checkmark 1/2$ c) 1/3 d) 1/16 [Mark 1]

(iii) If the general solution of $AX = 0$ is $(-2r, 4r, r)$, $r \in \mathbb{R}$, and $(1, 0, -2)$ is a solution of $AX = B$, then the general solution of $AX = B$ is:

a) $\checkmark (1 - 2r, 4r, r - 2)$ b) $(-2r, 0, -2r)$ c) $(-2r, 4r, r)$ d) $(-2r - 1, 4r, r - 2)$ [Mark 1]

(iv) A subset S of \mathbb{R}^3 is a basis of the vector space \mathbb{R}^3 if S is equal to:

a) $\checkmark \{(1,0,0), (0,2,1), (0,6,0)\}$ b) $\{(1,1,0), (2,1,0), (3,2,0)\}$ c) $\{(1,1,0), (0,0,0), (3,2,1)\}$ d) $\{(1,1,0), (0,0,1), (2,2,0)\}$ [Mark 1]

(v) If $B = \{u_1 = (2,1), u_2 = (4,3)\}$ and $C = \{v_1 = (0,1), v_2 = (6,0)\}$ are ordered bases of \mathbb{R}^2 , then the transition matrix $P_{C \rightarrow B}$ from C to B is equal to:

a) $\begin{bmatrix} 1 & -1/2 \\ -2 & 3/2 \end{bmatrix}$ b) $\checkmark \begin{bmatrix} -2 & 9 \\ 1 & -3 \end{bmatrix}$ c) $\begin{bmatrix} -2/3 & 3 \\ 1/3 & -1 \end{bmatrix}$ d) $\begin{bmatrix} 2 & 4 \\ 1 & 3 \end{bmatrix}$ [Mark 1]

(vi) If B is a square matrix of order 3 with $\det(B) = 2$, then $\text{nullity}(B)$ is equal to:

a) 2 b) 1 c) 3 d) $\checkmark 0$ [Mark 1]

(vii) If $\langle \cdot, \cdot \rangle$ is an inner product on \mathbb{R}^n and $\mathbf{u}, \mathbf{v} \in \mathbb{R}^n$ such that $\|\mathbf{u}\|^2 = 5$, $\|\mathbf{v}\|^2 = 1$, $\langle \mathbf{u}, \mathbf{v} \rangle = -2$, then $\langle \mathbf{u} + 2\mathbf{v}, 5\mathbf{u} - \mathbf{v} \rangle$ is equal to:

a) $\sqrt{5}$ b) $\checkmark 5$ c) 9 d) 41 [Mark 1]

(viii) If $S = \{A, I_2\} \subseteq M_{2 \times 2}(\mathbb{R})$, where A is a non-symmetric matrix, then S must be:

a) linearly dependent b) a spanning set for $M_{2 \times 2}(\mathbb{R})$ c) \checkmark linearly independent d) orthogonal [Mark 1]

(ix) Let T be the transformation from the Euclidean space \mathbb{R}^2 to \mathbb{R} given by $T(\mathbf{u}) = \|\mathbf{u}\|$ for all $\mathbf{u} \in \mathbb{R}^2$, where $\|\mathbf{u}\|$ is the Euclidean norm of \mathbf{u} . Then, for $\mathbf{v}, \mathbf{w} \in \mathbb{R}^2$ and $k \in \mathbb{R}$, T satisfies:

a) $T(\mathbf{u} + \mathbf{v}) = T(\mathbf{u}) + T(\mathbf{v})$ b) $\checkmark T(\mathbf{u} + \mathbf{v}) \leq T(\mathbf{u}) + T(\mathbf{v})$ c) $T(\mathbf{0}) > 0$ d) $T(k\mathbf{u}) = kT(\mathbf{u})$ [Mark 1]

(x) Zero is an eigenvalue of the matrix $\begin{bmatrix} 4 & 4 & 4 \\ 4 & 4 & 4 \\ 4 & 4 & 4 \end{bmatrix}$ with geometric multiplicity equal to:

a) 1 b) $\checkmark 2$ c) 3 d) 4 [Mark 1]

Question 2 [Marks 2 + 2 + 3]:

(a) Find the square matrix A of order 3 such that $A^{-1}(A - I) = \begin{bmatrix} 1 & 1 & 1 \\ 2 & 1 & 1 \\ 1 & 1 & 2 \end{bmatrix}$ and evaluate $\det(A)$.

Solution: $I - A^{-1} = A^{-1}(A - I) = \begin{bmatrix} 1 & 1 & 1 \\ 2 & 1 & 1 \\ 1 & 1 & 2 \end{bmatrix} \Rightarrow A^{-1} = \begin{bmatrix} 0 & -1 & -1 \\ -2 & 0 & -1 \\ -1 & -1 & -1 \end{bmatrix} \Rightarrow \det(A) = -1$, [Mark 1]

and $A = (A^{-1})^{-1} = \begin{bmatrix} 1 & 1 & -2 \\ 1 & 1 & 2 \\ -2 & -1 & 2 \end{bmatrix}$. [Mark 1]

(b) Let $A = \begin{bmatrix} 1 & 0 & -1 \\ 1 & 1 & -2 \\ -2 & -1 & 2 \end{bmatrix}$ and $B = \begin{bmatrix} -2 & 1 & 1 \\ -1 & 1 & -2 \\ 1 & -1 & -2 \end{bmatrix}$. Find a matrix X that satisfies $XA = B$.

Solution: From Part (a), $A^{-1} = \begin{bmatrix} 0 & -1 & -1 \\ -2 & 0 & -1 \\ -1 & -1 & -1 \end{bmatrix}$; hence, $X = BA^{-1} = \begin{bmatrix} -3 & 1 & 0 \\ 0 & 3 & 2 \\ 4 & 1 & 2 \end{bmatrix}$. [Marks 0.5 + 1 + 0.5]

(c) Solve the following system of linear equations:

$$\begin{array}{l} x + y + z = 1 \\ 2x + 2z = 3 \\ 3x + 5y + 4z = 2. \end{array}$$

Solution: The matrix of coefficient $A = \begin{bmatrix} 1 & 1 & 1 \\ 2 & 0 & 2 \\ 3 & 5 & 4 \end{bmatrix}$ has the inverse $A^{-1} = \frac{1}{-2} \begin{bmatrix} -10 & 1 & 2 \\ -2 & 1 & 0 \\ 10 & -2 & -2 \end{bmatrix}$. [Marks 1.5]

$$\text{Hence, } \begin{bmatrix} x \\ y \\ z \end{bmatrix} = A^{-1} \begin{bmatrix} 1 \\ 3 \\ 2 \end{bmatrix} = \begin{bmatrix} \frac{3}{2} \\ \frac{1}{2} \\ 0 \end{bmatrix}.$$

[The students may use any one of the methods included in the course MATH-244.]

Question 3 [Marks 3 + 3 + 2]:

Let $A = \begin{bmatrix} 1 & 0 & 1 \\ 1 & 2 & 3 \\ 2 & 0 & 2 \end{bmatrix}$ and $B = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 2 & 2 \\ 0 & 0 & 0 \end{bmatrix}$. Then:

(a) Find a basis and the dimension for each of the vector spaces $\text{row}(A)$, $\text{col}(A)$, and $N(A)$.

Solution: $\text{RREF}(A) = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{bmatrix}$. Hence, $\{(1,0,1), (0,1,1)\}, \{(1,1,2), (0,2,0)\}, \{(1,1,-1)\}$ are bases of $\text{row}(A)$, $\text{col}(A)$, $N(A)$, respectively, and so, $\dim(\text{row}(A)) = 2 = \dim(\text{col}(A))$, $\dim(N(A)) = 1$. [Mark 1]

(b) Decide with justification whether the following statements are true or false:

$$(i) \text{row}(A) = \text{row}(B) \quad (ii) \text{col}(A) = \text{col}(B) \quad (iii) N(A) = N(B).$$

Solution: $\text{RREF}(A) = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{bmatrix} = \text{RREF}(B) \Rightarrow \text{row}(A) = \text{row}(B)$ and $N(A) = N(B)$. [Marks 1 + 1]

But, $\text{col}(A) \neq \text{col}(B)$ since $(1,1,2) \notin \text{span}(\{(1,0,0), (0,2,0), (1,2,0)\})$. [Mark 1]

(c) Find all square matrices Z of order 3 such that $AZ = 0$.

Solution: From Part (a), $\{(1,1,-1)\}$ is a basis of the null space $N(A) = \{X \in \mathbb{R}^3 \mid AX = 0\}$. Hence,

$$Z = \begin{bmatrix} a & b & c \\ a & b & c \\ -a & -b & -c \end{bmatrix} \text{ satisfies } AZ = aA \begin{bmatrix} 1 \\ 1 \\ -1 \end{bmatrix} + bA \begin{bmatrix} 1 \\ 1 \\ -1 \end{bmatrix} + cA \begin{bmatrix} 1 \\ 1 \\ -1 \end{bmatrix} = a0 + b0 + c0 = 0, \text{ for all } a, b, c \in \mathbb{R}.$$

[Marks 0.5 + 1.5]

Question 4 [Marks 3 + (1 + 3)]:

(a) Construct an orthonormal basis C of the Euclidean space \mathbb{R}^3 by applying the Gram-Schmidt algorithm on the given basis $B = \{v_1 = (1,1,0), v_2 = (1,0,1), v_3 = (0,1,1)\}$, and then find the coordinate vector of $v = (1,2,0) \in \mathbb{R}^3$ relative to the orthonormal basis C .

Solution: $u_1 = v_1 = (1,1,0); u_2 = v_2 - \frac{\langle v_2, u_1 \rangle}{\|u_1\|^2} u_1 = \left(\frac{1}{2}, -\frac{1}{2}, 1\right); u_3 = v_3 - \frac{\langle v_3, u_1 \rangle}{\|u_1\|^2} u_1 - \frac{\langle v_3, u_2 \rangle}{\|u_2\|^2} u_2 = \left(-\frac{2}{3}, \frac{2}{3}, \frac{2}{3}\right)$.

Hence, $C = \{w_1 = \frac{1}{\sqrt{2}}(1,1,0), w_2 = \frac{1}{\sqrt{6}}(1, -1, 2), w_3 = \frac{1}{\sqrt{3}}(-1, 1, 1)\}$ is the required orthonormal basis of \mathbb{R}^3 .

Next, $\langle v, w_1 \rangle = \frac{3}{\sqrt{2}}$, $\langle v, w_2 \rangle = \frac{-1}{\sqrt{6}}$, and $\langle v, w_3 \rangle = \frac{1}{\sqrt{3}}$. Hence, $[v]_C = \begin{bmatrix} \frac{3}{\sqrt{2}} \\ \frac{-1}{\sqrt{6}} \\ \frac{1}{\sqrt{3}} \end{bmatrix}$. [Marks 1.5 + 0.5 + 1]

(b) Let \mathcal{P}_2 denote the vector space of real polynomials with degree ≤ 2 . Consider the linear transformation $T: \mathbb{R}^3 \rightarrow \mathcal{P}_2$ defined by: $T(1, 0, 0) = x^2 + 1$, $T(0, 1, 0) = 3x^2 + 2$, $T(0, 0, 1) = -x^2$. Then:

- Compute $T(a, b, c)$, for all $(a, b, c) \in \mathbb{R}^3$.
- Find a basis for each of the vector spaces $Im(T)$ and $ker(T)$.

Solution: (i) $T(a, b, c) = aT(1, 0, 0) + bT(0, 1, 0) + cT(0, 0, 1) = (a + 3b - c)x^2 + a + 2b$. [Mark 1]
(ii) From Part (i), $Im(T) = \{(a + 3b - c)x^2 + (a + 2b)1 \mid (a, b, c) \in \mathbb{R}^3\} = span(\{x^2, 1\})$, [Mark 1]
and $ker(T) = \{(a, b, c) \in \mathbb{R}^3 \mid (a + 3b - c)x^2 + (a + 2b)1 = 0\}$
 $= \{(a, b, c) \in \mathbb{R}^3 \mid a + 3b - c = 0, a + 2b = 0\}$
 $= \{(a, b, c) \in \mathbb{R}^3 \mid a = -2b, b = c\}$
 $= span(\{(-2, 1, 1)\})$. [Mark 1]

Hence, $\{1, x^2\}$ and $\{(-2, 1, 1)\}$ are bases of $Im(T)$ and $ker(T)$, respectively. [Mark 1]

Question 5 [Marks 3 + 2 + 3]: Let $A = \begin{bmatrix} 2 & 2 & -2 \\ 2 & 1 & -1 \\ 2 & 2 & -2 \end{bmatrix}$. Then:

(a) Find the eigenvalues of A .

Solution: $det(A - \lambda I) = det \begin{pmatrix} 2 - \lambda & 2 & -2 \\ 2 & 1 - \lambda & -1 \\ 2 & 2 & -2 - \lambda \end{pmatrix} = \lambda(\lambda + 1)(2 - \lambda) = 0$
 $\Rightarrow \lambda = -1, 0, 2$ are eigenvalues of A . [Marks 1+1+1]

(b) Find algebraic and geometric multiplicities of all the eigenvalues of A .

Solution: From Part (a), all eigenvalues of A are of same algebraic multiplicity 1. [Mark 0.5]
Next, $E_{-1} = span(\{(2, -1, 2)\})$, $E_0 = span(\{(0, 1, 1)\})$, and $E_2 = span(\{(1, 1, 1)\})$. Hence,
all eigenvalues of A are of same geometric multiplicity 1. [Marks 1.5]

(c) Is the matrix A diagonalizable? If yes, find a matrix P that diagonalizes A .

Solution: Since eigenvalues of A are different, A is diagonalizable. Next, from Part (b), the required matrix:

$$P = \begin{bmatrix} 2 & 0 & 1 \\ -1 & 1 & 1 \\ 2 & 1 & 1 \end{bmatrix}. \quad \text{[Marks 1.5 + 1.5]}$$