CHAPTER 2

SUBGRAPHS-CONNECTED GRAPH

SUBGRAPHS-CONNECTED GRAPH

7 Subgraph

7.1 Definitions

- 1. **Subgraph**: A subgraph of a graph G = (V(G), E(G)) is a graph H = (V(H), E(H)) verifying:
 - $V(H) \subseteq V(G)$
 - $E(H) \subseteq E(G)$
- 2. If H is a subgraph of G, we say that G contains H (or that H is contained in G, and we write: $G \supseteq H$ (or $H \subseteq G$).
- 3. Let G = (V, E) be a graph.
 - A spanning subgraph of a graph G is a subgraph H of G such that: V(H) = V.
 - For $X \subseteq V$, the subgraph $(X, E \cap [X]^2)$ of G is called the subgraph of G induced by X; it's denoted: G[X].
- 4. Let G = (V, E) be a graph.
 - If $e \in E$, the subgraph $(V, E \setminus \{e\})$ of a graph G is denoted: G e. (Thus G e is obtained, from G, by deleting the edge e).
 - If $v \in V$, the subgraph $G[V \setminus \{v\}]$ induced by $V \setminus \{v\}$ is denoted by: G v. (Thus, G v is obtained by deleting from G the vertex v together with all the edges incident with v).
- 5. A copy of a graph H in a graph G, is a subgraph of G which is isomorphic to H. Such a subgraph is then a H- subgraph of G.
 - For example a K_3 -subgraph of G is a triangle of G.
- 6. An *embedding* of a graph H in a graph G is an isomorphism between H and a subgraph of G ($\exists X \subseteq V, G[X] \simeq H$).
- 7. A supergraph of a graph G is a graph G' which contains G as a subgraph, that is: $(G' \supseteq G)$.
 - Note that each graph G is both a subgraph and supergraph of itself.
 - All other subgraphs H and supergraphs G' are *proper*; we write: $H \subset G$ or $G' \supset G$, respectively.

7.2 Remarks

- 1. Let G = (V, E) be a graph, $e \in E$, and $v \in V$.
 - G e is called an edge-deleted subgraph of G.

- G-v is called a vertex-deleted subgraph of G.
- Note That any subgraph H of G can be obtained by repeated applications of the basic operations of edge-deletion and vertex-deletion. (for instance, by first deleting the edges of G not in H and then deleting the vertices of G not in H).
- 2. Given a graph G(V, E), if $e = \{u, v\} \in [V]^2 \setminus E$, the supergraph $(V, E \cup \{e\})$ of G is denoted by: G + e.
- 3. The following theorem due to Erdös (1964/1965), confirms that every graph has an induced subgraph whose minimum degree is relatively large.

Theorem 7.1 (Erdös)

Let G be a graph with $d(G) \ge 2k$; where $k \ge 1$ is an integer. Then, G has an induced subgraph H with: $\delta(H) \ge k + 1$.

Proof.

Let G be a graph with $d(G) \ge 2k$; where $k \ge 1$ is an integer, and consider an induced subgraph H = G[X], where $X \subseteq V$ such that:

- 1. H is with the **largest** possible average degree, that is d(H) is maximum among d(K) where K is induced subgraph of G, $d(K) \leq d(H)$, in particular G is an induced subgraph of G.
- 2. |X| = |V(H)| is **minimum** among |V(L)| where L is induced subgraph of G with: d(L) = d(H), we notice that: if |V(K)| < |V(H)|, then d(K) < d(H).
- Note For each graph K = (V(K), E(K)), we denoted: v(K) = |V(K)| and e(K) = |E(K)|.
- We will show that: $\delta(H) \geq k + 1$.

Fact 1: v(H) > 1.

Indeed: If not v(H) = 1, then $0 = \delta(H) = d(H)$. But, $d(H) \ge d(G)$, because G is an induced subgraph of G (So by 1. we have $d(H) \ge d(G)$), then $0 \ge d(G) \ge 2k \ge 2$; contradiction.

Fact 2: $\forall x \in V(H), d_H(x) \geq k+1$.

Indeed: Suppose by contradiction that $\exists x \in V(H) : d_H(x) \leq k$. Consider the subgraph: $H' = H - x = H[X \setminus \{x\}]$

- Clearly, $H' = G[X \setminus \{x\}]$, and then H' is an induced subgraph of G.
- $d(H') = \frac{1}{v(H')} \cdot \sum_{v \in V(H')} d_{H'}(v)$. Then, $d(H') = \frac{2e(H')}{v(H')} = \frac{2e(H')}{v(H) - 1}.$
- But, $d_H(x) \le k$, then: $e(H') \ge e(H) k$, so, $d(H') = \frac{2e(H')}{v(H) 1} \ge \frac{2(e(H) k)}{v(H) 1}$. But, $2k \le d(G)$, then $d(H') \ge \frac{2e(H) - d(G)}{v(H) - 1} \ge \frac{2e(H) - d(H)}{v(H) - 1} = d(H)$. Thus, $d(H') \ge d(H)$; contradiction (v(H') < v(H)).

8 Walks-Paths-Cycles

.

Definition 8.1

Consider a graph G = (V, E).

- 1. A path P of G from u to v (where $u, v \in V$) is a sequence of vertices $u_0 = u, ..., u_k = v$ such that: $\forall i < k, \{u_i, u_{i+1}\} \in E(G)$, and all the u_i are distinct vertices.
 - The length is l(P) the number of edges it uses. (Here, l(P) = k).
 - P is a uv-path of length k.

2. Incidence and Adjacency matrices

- Let G = (V, E) be a graph where: $V = \{v_1, ..., v_n\}$. The adjacency matrix of G is the (n, n) matrix $A_G = (a_{ij})_{1 \le i,j \le n}$, where: $a_{ij} = 1$, if $\{v_i, v_j\} \in E$, and $a_{ij} = 0$, if not.
- Let G = (V, E) be a graph where: $V = \{v_1, ..., v_n\}$ and $E = \{e_1, ..., e_m\}$. The incidence matrix of G is the (n, m) matrix $M_G = (m_{ij})_{1 \le i \le n, 1 \le j \le m}$, where: $m_{ij} = 1$, if $v_i \in e_j$, and $m_{ij} = 0$, if not.
- 3. A cycle C of G is a sequence of vertices $u_0, ..., u_k$ forming a u_0u_k -path such that: $\{u_0, u_k\} \in E(G)$ (where $k \geq 2$). We also denote $(u_0, ..., u_k, u_0)$ this cycle.
- 4. Consider a graph G = (V, E).
 - Paths in G do not contain repeated vertices or edges.
 - Let $u, v \in V$ be a vertices, walk from u to v in G is any sequences of vertices $u = u_0, ..., u_k = v$ such that: $\forall i < k, \{u_i, u_{i+1}\} \in E(G)$.
 - A walk in G is any sequences of vertices $u_0, ..., u_k$ such that: $\forall i < k, \{u_i, u_{i+1}\} \in E(G)$. Thus in a walk, edges and vertices may be repeated.
 - The length of this walk is the number of its edges (here: k).
 - The trail is a walk w where all its edges are distinct.

Proposition 8.2

Let $u \neq v$ be a two vertices of a graph G = (V, E). If there is a walk $(u_0 = u, ..., u_k = v)$ from u to v, then we can extract a path from u to v: $u_{i_1} = u, ..., u_{i_p} = v$.

Proof.

- Consider a walk $P = (\alpha_1 = u, ..., \alpha_q = v)$ which is extract from the initial walk $(u_0 = u, ..., u_k = v)$ and which is with **minimum** length (among all extract walks $(\beta_1 = u, ..., \beta_q = v)$). **Note that** the initial walk is extract from itself.
- Fact P is a path. Indeed: Assume by contradiction that there are $1 \le i < j \le p$ such that ; $\alpha_i = \alpha_j$. Thus, $P' = (\alpha_1 = u, ..., \alpha_{i-1}, \alpha_i = \alpha_j, \alpha_{j+1}, ..., \alpha_q = v)$ is an extract walk with: l(P') < l(P). Contradiction.

Proposition 8.3

Let $A_G = (a_{ij})$ be the adjacency matrix of a graph G = (V, E) where $V(G) = \{v_1, ..., v_n\}$. For any integer $k \ge 1$, let $A_G^k = (a_{ij}^{[k]})$. Then for each integer $k \ge 1$, we have: $\forall i, j \in \{1, ..., n\}$; $a_{ij}^{[k]}$ is the number of walks of length k from v_i to v_j .

Proof.

By induction on k.

- For k = 1, [there is a walk of length 1 from v_i to v_j] if and only if $[\{v_i, v_j\} \in E(G)]$, which case $[a_{ij}^{[1]} = a_{ij} = 1]$.
- Assume it's true whenever $1 \leq k \leq t$, and consider A_G^{t+1} . Let $i, j \in \{1, ..., n\}$. $a_{ij}^{[t+1]} = \sum_{l=1}^{n} a_{il}^{[t]}.a_{lj} = \sum_{l=1}^{n} N_l$, $(A_G^{t+1} = A_G^t.A_G)$, where: N_l = the number of walks $(\alpha_0 = v_i, ..., \alpha_t = v_l, \alpha_{t+1} = v_j)$ with length t+1 and which terminates by the edge $\{v_l, v_j\}$ (it's deduced from the hypothesis of the induction on $a_{il}^{[t]}$).
- Thus, $a_{ij}^{[t+1]}$ is the number of walks of length (t+1) from v_i to v_j .

Proposition 8.4

Given a graph G = (V, E), if all vertices of G have degree at least two, then G contains a cycle.

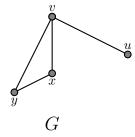
Proof.

Let $P=v_0v_1...v_p$ be a longest path in G. Note that: $p\geq 2$ (because, for $x\in V$ and $y\neq z\in N(x)=\{x,y\}$ we have: yxz is a path in G). As $d(v_p)\geq 2$, there is $v\in N(v_p)\setminus \{v_{p-1}\}$. If v is not in P (that is: if $v\notin \{v_i; 0\leq i\leq p\}$), the path $v_0v_1...v_pv$ contradicts the choice of as the longest path.

Example 8.5

Consider the graph $G = (\{x, y, u, v\}, \{\{u, v\}, \{v, x\}, \{x, y\}, \{y, v\}\})$

So, there is $i: 0 \le i \le p-2$ such that: $v=v_i$. Thus $v_i v_{i+1} \dots v_p v_i$ is a cycle in G.



The sequence degree of the graph G is (1,2,2,3), where $d_G(u) = 1 < 2$, but the graph G has a cycle C: xyvx.

Remarks 8.6

Let $w : v_0 = x, v_1, ..., v_p = y$ an xy-walk.

- 1. We say that w connects x to y.
- 2. The vertices x and y are called the ends of the walk, x is its initial vertex and y its terminal vertex.

- 3. The vertices $v_1, ..., v_{p-1}$ are its internal vertices.
- 4. The walk w is closed if x = y.
- 5. A cycle of a graph G is closed trail of length ≥ 3 , whose initial and internal vertices are distinct.

9 Connected graphs

Definition 9.1

Let G = (V, E) be a graph, and let u, v be two vertices in V.

- 1. Two vertices u and v of G are connected if u = v, or if $u \neq v$ and a uv-path exists in G.
- 2. The graph G is connected if $\forall x, y \in V$, x and y are connected.
- 3. The graph G is not connected, we called G is disconnected. Note that if $|v(G)| \leq 1$, then G is connected.

Proposition 9.2

Given a graph G=(V,E), for $x,y\in V$ we denote $x\mathcal{C}y$, if x and y are connected. \mathcal{C} is an equivalence relation on the set V.

Proof.

Clearly, \mathcal{C} is reflexive and symmetric.

For the transitivity, consider $u, v, w \in V$, is clear if u = v or v = w,

if not assume that: $(u \neq v, uCv, \text{ and } v \neq w, vCw)$.

Let $P_1: u_0 = u, ..., u_p = v$ be a uv-path in G, and $P_2: v_0 = v, ..., v_q = w$ be a vw-path in G.

Then $W: u_0 = u, ..., u_p = v = v_0, ..., v_q = w$, obtained by concatenating P_1 and P_2 , is an uw-walk in G. By Proposition 8.2, we extract a uw-path in G. Thus, uCw.

Remarks 9.3

Let G = (V, E) be a graph, and given C the equivalence relation on the set V.

- 1. If X is an equivalence class of C on V is called connected component, and G[X] is an induced subgraph of the graph G.
- 2. The graph G is connected if C has at most one class.
- 3. Given a disconnected graph G = (V, E), then for all connected components $X \neq Y$ of G, we have: $\forall (x, y) \in X \times Y$; $\{x, y\} \notin E$. So, the connected components: $X_1, ..., X_k$ of G satisfy:
 - The induced subgraphs: $G[X_1], ..., G[X_k]$, are connected.
 - the graph G decomposed as:

4. A graph G = (V, E) is connected if and only if $\forall x \neq y \in V$, there is an xy-path in G.

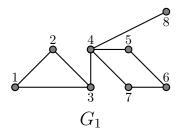
5. In chapter 1, we consider the following definition:

Definition 9.4

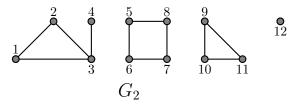
- A graph G = (V, E) is disconnected graph if V can be partitioned into $\{X, Y\}$ such that: $(X \neq \emptyset, Y \neq \emptyset, \forall (x, y) \in X \times Y : \{x, y\} \notin E)$.
- If a graph G is not disconnected, we say that G is connected graph.
- Clearly, a graph G = (V, E) is connected (in this sense) if and only if a graph G = (V, E) is connected (in the sense of the present chapter).
- 6. Given a connected component X of graph G = (V, E), we have: G[X] is connected and for each subset Y of V such that: $X \subset Y$, the induced subgraph G[Y] is disconnected.
- 7. If $P := x_0, ..., x_p$ is a path of G, then $\{x_0, ..., x_p\}$ is included in a connected component X of G.
- 8. If X is a connected component of graph G = (V, E), we can say that the subgraph: G[X] is connected component of G.
 - Thus, a connected subgraph H of graph G, is a connected component if and only if H is not contained in any connected subgraph of G having more vertices or edges than H.

Example 9.5

1. A graph $G_1 = (\{1, 2, 3, 4, 5, 6, 7, 8\}, \{\{1, 2\}, \{2, 3\}, \{3, 1\}, \{3, 4\}, \{4, 5\}, \{5, 6\}, \{6, 7\}, \{7, 4\}, \{4, 8\}\})$ G_1 is a connected graph



2. A graph $G_2 = (\{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12\}, \{\{1, 2\}, \{2, 3\}, \{3, 1\}, \{3, 4\}, \{5, 6\}, \{6, 7\}, \{7, 8\}, \{8, 5\}, \{9, 10\}, \{10, 11\}, \{11, 9\}\})$ G_2 is a disconnected graph; it has exactly 4 connected components: $X_1 = \{1, 2, 3, 4\}, X_2 = \{5, 6, 7, 8\}, X_3 = \{9, 10, 11\} \text{ and } X_4 = \{12\}.$



Notation 9.6 (Edge Cuts)

Let G = (V, E) be a graph and X, Y be two subsets of V (not necessarily disjoint).

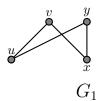
- 1. E[X,Y]; denotes the set of edges of G with one end in X and the other end in Y.
- 2. e(X,Y) denotes: |E[X,Y]|.
- 3. If Y = X, the set E[X, X] is denoted E[X] and e(X, X) denoted e(X).
- 4. If $Y = V \setminus X$, the set $E[X,Y] = E[X,V \setminus X]$ is called the **edge cut** of G associated with X (or the coboundary of X), and it is denoted by: $\partial(X)$. (Note that: $\partial(X) = E[X,V \setminus X] = \partial(V \setminus X)$).

Remarks 9.7

- 1. If G = (V, E) is a graph, then $\partial(V) = \emptyset$.
- 2. A graph G = (V, E) is bipartite if and only if $\partial(X) = E$ for some proper and non empty subset X of V.
- 3. (A graph G = (V, E) is connected) if and only if $(\forall X \in \mathcal{P}(V) \setminus \{\emptyset, V\}, \partial(X) \neq \emptyset)$.

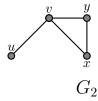
Example 9.8

1. A graph $G_1 = \{x, y, u, v\}, \{\{u, v\}, \{v, x\}, \{x, y\}, \{y, v\}\}\}$



$$\begin{split} \partial(\{u,v\}) &= \{\{v,x\}, \{y,u\}\} \\ \partial(\{u,x\}) &= \{\{u,v\}, \{u,y\}, \{v,x\}, \{x,y\}\} \\ \partial(\{u,v,y\}) &= \{\{v,x\}, \{x,y\}\}. \end{split}$$

2. A graph $G_2 = \{x, y, u, v\}, \{\{u, v\}, \{v, x\}, \{x, y\}, \{y, v\}\}\}$



$$\partial(\{u, v\}) = \{\{v, x\}, \{y, v\}\}\$$

$$\partial(\{u, x\}) = \{\{u, v\}, \{v, x\}, \{x, y\}\}\}$$

$$\partial(\{u, v, y\}) = \{\{v, x\}, \{x, y\}\}.$$

Proposition 9.9

For any graph
$$G = (V, E)$$
 and any subset X of V , we have: $|\partial(X)| = \sum_{v \in X} d_G(v) - 2e(X)$.

Proof.

Consider $s = \sum_{v \in X} d_G(v)$. In this sum, each pair $\{x,y\}$ of distinct elements of V, is:

- not counted, if $\{x,y\} \cap X = \emptyset$.
- counted once, if $|\{x,y\} \cap X| = 1$ (that is: if $\{x,y\} \in \partial(X)$).
- counted twice, if $\{x,y\} \subseteq X$ (that is: if $\{x,y\} \in E(X)$).

Thus, $s = 2|E(X)| + 1.|\partial(X)|$.

Theorem 9.10

A graph G = (V, E) is even if and only if $|\partial(X)|$ is even for every subset X of V. Recall that G is even if: $d_G(x)$ is even for all $x \in V$.

Proof.

- " \Leftarrow " Suppose that: $\forall X \subseteq V$, $|\partial(X)|$ is even. So, $\forall v \in V$, $|\partial(\{v\})| = d_G(v)$ is even. Thus, G is even.
- " \Rightarrow " Conversely, if G is even, then, give a subset X of V, we have: $\forall v \in V$, $d_G(v)$ is even and then: $\sum_{v \in X} d_G(v)$ is even, and by Proposition 9.9, $|\partial(X)| = \sum_{v \in X} d_G(v) 2e(X)$ is even.

Proposition 9.11

Let G = (V, E) be a graph of order $n \ge 1$. G is connected if and only if there is an enumeration: $u_1, ..., u_n$ of its vertices such that: $\forall k \in \{1, ..., n\}$, the induced subgraph $G[\{u_1, ..., u_k\}]$ is connected.

Proof.

- " \Leftarrow " Immediate.
- " \Rightarrow " Let $x \in V$ we will construct $u_1, ..., u_k$ by induction on $k \in \{1, ..., n\}$. Let $u_1 = x$. For k < n, assume that $u_1, ..., u_k$ are defined such that; $\forall i \le k$; $G[\{u_1, ..., u_i\}]$ is connected. As $X = \{u_1, ..., u_k\} \in \mathcal{P}(V) \setminus \{\emptyset, V\}$, and G is connected, then: $\partial(X) \ne \emptyset$. So, there is $y \in V \setminus X$ and there is $i \in \{1, ..., k\}$ such that: $\{u_i, y\} \in E$. Thus, we can define u_{k+1} by: $u_{k+1} = y$. Note that: $G[\{u_1, ..., u_k, u_{k+1}\}]$ is connected, (because $\{u_1, ..., u_k, u_{k+1}\} = X \cup \{y\}$, G[X] is connected and y is adjacent to an element of G (at least)).

Remarks 9.12

- 1. Given a graph G = (V, E) and a subset X of V such that: G[X] is connected, then: $\forall y \in V \setminus X$, we have: $(G[X \cup \{y\}] \text{ is connected})$ if and only if (y is adjacent to at least, an element of X).
- 2. In the proof of Proposition 9.11, we proved that if G = (V, E) is a connected graph, then: for each vertex x of G, there is an enumeration: $u_1 = x, ..., u_n$ of its vertices such that: $\forall k \in \{1, ..., n\}$, the induced subgraph $G[\{u_1, ..., u_k\}]$ is connected.

Proposition 9.13

Let G = (V, E) be a connected graph of order $p \ge 2$ such that: $\forall x \in V, d(x) \le 2$. Then G is a path P_p or a cycle C_p .

Proof.

Let $P = v_0, ..., v_q$ a longest path in G (Note that: $q \ge 1$, and P exists because G is connected).

- 1. If $V \neq \{v_0, ..., v_q\}$. As G is connected then: $\partial(\{v_0, ..., v_q\}) \neq \emptyset$. So, there is $\alpha \in V \setminus \{v_0, ..., v_q\}$ and there is $0 \leq i \leq q$ such that: $\{\alpha, v_i\} \in E$.
 - If i = 0 (resp. i = q) then: $P' = \alpha, v_0, ..., v_q$ is a path; contradiction: (l(P') > l(P)). (resp. $P' = v_0, ..., v_q, \alpha$ is a path; contradiction: (l(P') > l(P)).)
 - If 0 < i < q; then: $d(v_i) \ge 3$ contradiction.
- 2. So, $V = \{v_0, ..., v_a\}$.

As: $\forall i; \ 0 < i < q$: $\{v_{i-1}, v_{i+1}\} \subseteq N_G(v_i)$ and $d(x) \le 2$ for all $x \in V$, then $\{v_{i-1}, v_{i+1}\} = N_G(v_i)$.

Thus: there are two cases:

- $\{v_0, v_q\} \in E$: then G is a cycle C_q .
- $\{v_0, v_q\} \notin E$: then G is a path P_q .

10 Cut-vertex and Bridges

Notation 10.1

In this section, for each graph G = (V, E), we denoted by c(G), the number of connected components of G.

So, (G is connected) if and only if $(c(G) \le 1)$.

Definition 10.2

Consider a graph G = (V, E), with: $|V| \ge 2$.

- 1. For non isolated vertex v, clearly: $c(G-v) \ge c(G)$, we say that v is a cut-vertex if c(G-v) > c(G).
- 2. For each edge e of G, clearly: $c(G e) \ge c(G)$, we say that e is a bridge if c(G e) > c(G).

Remarks 10.3

- 1. Let G = (V, E) be a connected graph, u be a vertex of G, and e be an edge of G. Then: (u is a cut-vertex (resp. e is a bridge) of G) if and only if (G u (resp. G e) is not connected)
- 2. Let G = (V, E) be a graph, v be a non isolated vertex of G, e be an edge of G, X be the connected component of G containing v, and Y be the connected component of G containing e. Then:
 - (a) (v is a cut-vertex of G) if and only if (v is a cut-vertex of G[X]).
 - (b) (e is a bridge of G) if and only if (e is a bridge of G[Y]).

3. If v is a cut-vertex of a graph G, then $c(G - v) - c(G) \ge 1$, and we may have: c(G - v) - c(G) > 1 (for example, consider a star).

Proposition 10.4

Let G = (V, E) be a graph and $e \in E$. If e is a bridge of G, then: c(G - e) = c(G) + 1.

Remark 10.5

Let G = (V, E) be a graph and $e = \{a, b\}$ be a bridge of G, Y be the connected component of G containing e. G[Y] - e has exactly 2 connected components: X_a and X_b , where $a \in X_a$ and $b \in X_b$.

Proof.

Pose $e = \{a, b\}$, let X_a (resp. X_b) the connected component of G - e containing a (resp. b). Let $t \in Y \setminus \{a, b\}$, where Y is the connected component of G containing e. Consider a ta-path: $P: u_0 = t, u_1, ..., u_k = a$, of G[Y].

- If $(k \ge 2 \text{ and } u_{k-1} = b, \text{ then: } (u_0 = t, u_1, ..., u_{k-1} = b) \text{ is a } tb\text{-path of } G e, \text{ and then: } t \in X_b.$
- If $\forall i 1 \leq i \leq k-1$, $u_i \neq b$, then P is ta-path of G-e, and then: $t \in X_a$.

It ensues that: $\forall t \in Y \setminus \{a, b\}, t \in X_a \text{ or } t \in X_b$.

So, G[Y] - e has at most 2 connected components: X_a and X_b . As, e is a bridge, then $X_a \neq X_b$ and c(G[Y] - e) = 2. Thus, c(G - e) = c(G) + 1.

Proposition 10.6

Let G = (V, E) be a graph and e be an edge. Then: (e is a bridge of G) if and only if (e does not lie an any cycle of G)

Proof.

We may assume that G is connected.

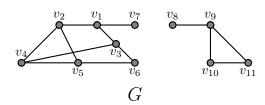
" \Rightarrow " By contraposition, assume that $e = \{u, v\}$ does lie on a cycle $\mathcal{C} : (u, v = u_0, ..., u_p = u)$. Then: G - e contains a uv-path; so, in G - e; $X_a = X_b$. So, e is not a bridge of G.

" \Leftarrow " Conversely, suppose that $e = \{u, v\}$ is an edge which lies on no cycle of G. Assume that, by contradiction, that e is not a bridge of G. Then G - e is connected.

So, there is a uv-path $P: (u_0 = u, u_1, ..., u_p = v)$ in G - e. Thus,: $P + e: (u_0 = u, u_1, ..., u_p = v, u)$ is a cycle in G; contradiction.

Example 10.7

 $G = (\{v_1, v_2, ..., v_{11}\}, \{\{v_1, v_2\}, \{v_1, v_3\}, \{v_1, v_7\}, \{v_2, v_4\}, \{v_2, v_5\}, \{v_3, v_4\}, \{v_3, v_6\}, \{v_4, v_5\}, \{v_5, v_6\}, \{v_8, v_9\}, \{v_9, v_{10}\}, \{v_{10}, v_{11}\}, \{v_{11}, v_9\})$



- c(G) = 2
- The cut-vertices of G are: v_1 , v_9 ($c(G v_1) = 3$ and $c(G v_9) = 3$).
- The bridges of G are: $\{v_1, v_7\}$, $\{v_8, v_9\}$ $(c(G \{v_1, v_7\}) = 3$ and $c(G \{v_8, v_9\}) = 3)$.

11 SUBGRAPHS-CONNECTED GRAPHS

Exercise 11.1 Which pairs of graphs are isomorphic?

 $G_1 = (\{1, 2, 3, 4, 5, 6, 7, 8\}, \{1, 2\},$

$$\{1,5\},\{1,8\},\{2,3\},\{2,6\},\{3,4\},\{3,7\},\{4,5\},\{4,8\},\{5,6\},\{6,7\},\{7,8\}).$$

$$G_2 = (\{1,2,3,4,5,6,7,8\},$$

$$\{1,2\},\{1,5\},\{1,8\},\{2,3\},\{2,7\},\{3,4\},\{3,6\},\{4,5\},\{4,8\},\{5,6\},\{6,7\},\{7,8\}).$$
 $G_3 = (\{1,2,3,4,5,6,7\},$

$$\{1,2\},\{1,4\},\{1,5\},\{1,7\},\{2,3\},\{2,5\},\{2,6\},\{3,4\},\{3,6\},\{3,7\},\{4,5\},\{4,7\},\{5,6\},\{6,7\}).$$

$$G_4 = (\{1,2,3,4,5,6,7\},$$

$$\{1,2\},\{1,3\},\{1,6\},\{1,7\},\{2,3\},\{2,4\},\{2,7\},\{3,4\},\{3,5\},\{4,5\},\{4,6\},\{5,6\},\{5,7\},\{6,7\}).$$

Exercise 11.2

- 1. (a) Prove that: if G is a disconnected graph, then the complement graph of G is connected.
 - (b) Deduce that for all graph G or its complement \overline{G} of G, is a connected graph.

2. Show that if
$$D = (d_n, d_{n-1}, ..., d_2, d_1)$$
 is graphic, then $\sum_{i=1}^n d_i$ is even, and

$$\sum_{i=1}^{k} d_i \le k(k-1) + \sum_{i=k+1}^{n} \min\{k, d_i\}; \quad \forall k, \ 1 \le k \le n.$$

3. Let G = (V, E) be a graph of order $n \ge 2$. In each of the following cases, show that G is connected

(a)
$$\sum_{v \in V} d(v) > n^2 - 2n$$
.

(b)
$$\forall v \in V, \ d(v) \ge \frac{n-1}{2}$$
.

Exercise 11.3

Consider a graph
$$G = (\{v_1, v_2, v_3, v_4\}, \{\{v_1, v_2\}, \{v_1, v_3\}, \{v_2, v_3\}, \{v_3, v_4\}\}).$$

- 1. Find all walks from v_1 to v_4 of length 3.
- 2. Find all paths from v_1 to v_4 of length 3.

Exercise 11.4

Prove that:

- 1. If G is a nontrivial graph of order n such that $d(u) + d(v) \ge (n-1)$ for every two non adjacent vertices u and v, then G is connected.
- 2. If G is a graph of order n such that $\delta(G) \geq \frac{n-1}{2}$, then G is connected.