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CHAPTER 3

TREES
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TREES 12 DEFINITIONS- EXAMPLES

TREES

12 Definitions- Examples

12.1 Definitions:

1. A graph G is acyclic or forest if it contains no cycle.

2. A graph G is a tree if G is connected and acyclic.

Remark:
A graph is acyclic if and only if each of its connected components is a tree.

12.2 Examples:

The trees on at most 5 vertices are, up to isomorphy, the following 8 graphs (and the null graph).

1. Tree with one vertex T = ({v}, ∅)

v

T
2. Tree with 2 vertices T = ({u, v}, {{u, v}})

u

v

T
3. Tree with 3 vertices T = ({v1, v2, v3}, {{v1, v2}, {v2, v3}})

v1

v2

v3

T
4. Tree with 4 vertices

T1 = ({v1, v2, v3, v4}, {{v1, v2}, {v2, v3}, {v3, v4}}),
and T2 = ({v1, v2, v3, v4}, {{v1, v3}, {v2, v3}, {v3, v4}}).

v1

v2

v3

v4

T1

v1 v2

v3

v4

T2
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TREES 13 PROPERTIES OF TREES

5. Tree with 5 vertices

T1 = ({v1, v2, v3, v4, v5}, {{v1, v2}, {v2, v3}, {v3, v4}, {v4, v5}}),

T2 = ({v1, v2, v3, v4, v5}, {{v1, v3}, {v2, v3}, {v3, v4}, {v4, v5}}),
and

T3 = ({v1, v2, v3, v4, v5}, {{v1, v3}, {v2, v3}, {v4, v3}, {v5, v3}}).

v1

v2

v3

v4

v5

T1

v1 v2

v3

v4

v5

T2

v1 v2

v3

v4 v5

T2
13 Properties of Trees

13.1 Remarks:

Given a graph G = (V,E) and a set S of edges of G, we can consider the subgraph of G whose
edge set in S and whose vertex set is the set of all ends of edges of S. This subgraph is denoted
G[S], and called ” the edge-induced subgraph G[S]”.

Note that: an edge-induced subgraphs is simply a subgraph without isolated vertices.

Lemma 13.1
Let G = (V,E) be a graph and u ̸= v two vertices.
If G has two distinct paths P1 and P2 from u to v, then G contains a cycle.

Proof.
Consider the edge-induced subgraph H = G[E(P1) ∪ E(P2)]. Each vertex of H is of degree

≥ 2, then H contains a cycle (So G also).

Proposition 13.2
In a tree, any two distinct vertices are connected by exactly one path.

Proof.
Let T = (V,E) be a tree and u ̸= v ∈ V . As T is connected, then T has at least one path

P from u to v. If T has a path P ′ ̸= P , from u to v, then by Lemma 13.1, T contains a cycle;
contradiction.

Remarks 13.3

1. As any graph in which all degrees are at least two contains a cycle, then every tree has a
vertex of degree at most one.
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TREES 13 PROPERTIES OF TREES

2. Thus, any tree T on n ≥ 2 vertices has at least a vertex of degree 1. Each such a vertex is
called ”a leaf of T”.

3. Given a graph G = (V,E) and a vertex x of G such that: dG(x) = 1. Then:

(a) (G is connected) if and only if (G− x is connected).

(b) (G is acyclic) if and only if (G− x is acyclic).

4. Note Thus, given a tree T = (V,E) on n ≥ 2 vertices, then: for each leaf x of T , T − x is
a tree.

Lemma 13.4
Given an acyclic graph G = (V,E) with at least one edge (i.e nonempty acyclic graph), then G

has at least two vertices of degree 1.

Proof.
Consider a path P = (u1, ..., up) of G, with maximum length (in particular: p ≥ 2). Then,

d(u1) ≥ 1 and d(up) ≥ 1.
If d(u1) > 1 (resp. d(up) > 1), then there is y ∈ N(u1) \ {u2} (resp. y ∈ N(up) \ {up−1}).
We distinguish two cases as follows:
Firstly: If y = ui, for some i ∈ {1, ..., p}, then p ≥ 3 and C = (u1, u2, ..., ui = y, u1) is a cycle of
G (resp. C = (ui = y, ui+1, ..., up, ui = y) is a cycle of G); contradiction.
Secondly: If y /∈ {uj; 1 ≤ j ≤ p}, then P ′ = (y, u1, ..., up) is a path of G and its length l verifies:
l > length of P ; contradiction.
Thus, dG(u1) = dG(up) = 1.

Proposition 13.5
Every tree on n ≥ 2 vertices, has at least two leaves.

Proof.
As a tree T on n ≥ 2 vertices is an acyclic graph with at least one edges, we conclude by

Lemma 13.4

Proposition 13.6
For every tree T on n ≥ 1 vertices, we have: e(T ) = n− 1 (i.e: e(T ) = v(V )− 1).

Proof.
By induction on n. If n = 1, then T ≃ K1 and then e(T ) = 0 = v(V )− 1.

Let n ≥ 1 be an integer and assume that for every tree T on n ≥ 1 vertices, e(T ) = n−1. Consider
a tree T ′ = (V,E) with: v(T ′) = |V | = n + 1. By Proposition 34.2, we may consider a leaf u of
T ′. As T ′ − u is a tree on n vertices, then by hypothesis (of induction); e(T ′ − u) = v(T ′ − u)− 1.
But, e(T ′ − u) = e(T ′) − 1 (because dT ′(u) = 1) and v(T ′ − u) = |V (T ′) \ {u}| = v(T ′) − 1 = n.
So, e(T ′)− 1 = n− 1. Thus, e(T ′) = n = v(T ′)− 1.
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14 Characterization of Trees

Lemma 14.1
Let G = (V,E) be a graph without isolated vertex such that: |V | = n ≥ 2 and |E| = n − 1.

Then G has at least two vertices of degree 1.

Proof.
Let A = {u ∈ V : d(u) = 1} and B = V \ A. 2|E| =

∑
u∈V

d(u) =
∑
u∈A

d(u) +
∑
u∈B

d(u).

So, 2(n−1) = |A|+
∑
u∈B

d(u). As: ∀u ∈ B, d(u) ≥ 2, then: 2(n−1) ≥ |A|+2|B| = |A|+2(n−|A|).

Thus, 2n− 2 ≥ −|A|+ 2n and then: |A| ≥ 2.

Theorem 14.2
Let G = (V,E) be a graph with: |V | = n ≥ 1. The following assertions are equivalent.

1. G is a tree.

2. G is connected and |E| = n− 1.

3. G is acyclic and |E| = n− 1.

Proof.

• ”1.⇒ 2.” If G is a tree, then G is connected (by definition) and |E| = n− 1 by Proposition
35.2.

• ”2.⇒ 3.” By induction on n ( for ”G is acyclic”).
→ For n = 1 or n = 2, the result is immediate.
→ For n ≥ 2 such that the result is true for n. Consider a graph G′ = (V ′, E ′) such that
G′ is connected, |V ′| = n + 1 and |E ′| = n. By Lemma 14.1, consider a vertex u of G′ such
that: dG′(u) = 1 (indeed there are at least two such vertices).
Clearly, G′−u is connected with: v(G′−u) = n and e(G′−u) = e(G′)−1 = |E ′|−1 = n−1.
Thus, by hypothesis (of induction), (G′−u) is acyclic. As, dG′(u) = 1, then G′ is also acyclic.

• ”3.⇒ 1.” By induction on n.
→ For n = 1, the result is trivial.
→ Assume that the result (i.e. this implication) is true for some n ≥ 1 and consider a graph
G′ = (V ′, E ′) such that G′ is acyclic, |V ′| = n+ 1 and |E ′| = n. By Lemma 13.4, consider a
vertex u of G′ such that: dG′(u) = 1.
Thus, G′ − u is (also) acyclic with: v(G′ − u) = n and e(G′ − u) = e(G′)− 1 = n− 1.
Thus, by hypothesis (of induction), (G′ − u) is a tree, then is connected. Thus, G′ is also
connected (and then G′ is a tree, because G′ is acyclic by hypothesis).

15 Spanning trees

Definition 15.1

1. Given a graph G = (V,E), a subgraph of G which is a tree is called ”a subtree of G”.
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TREES 15 SPANNING TREES

2. A spanning subgraph of G which is a tree is called spanning tree of G.

Example 15.2
Let G = ({a, b, c, d, e}, {{a, b}, {a, c}, {a, d}, {b, c}, {b, e}, {e, d}, {e, c}, {d, c}}) be a graph.

d e

c

a b

G
Then T1 = ({a, b, c, d, e}, {{a, b}, {a, c}, {e, c}, {d, c}}) is spanning tree of G.

d e

c

a b

T1

Then T2 = ({a, b, c, d, e}, {{a, d}, {e, d}, {b, e}, {b, c}}) is spanning tree of G.

d e

c

a b

T2

Remarks 15.3

1. Recall that a result in chapter 2: Given an edge e of a graph G,
(e is a bridge of G) if and only if ( e does not lie on any cycle of G).

2. A bridge of G which is also called ” a cut edge of G” (See Book of ”Bondy and Murty”).

Theorem 15.4
A graph is connected if and only if it has a spanning tree.

Proof.

• ”⇐” If a graph G has a spanning tree T , then two distinct vertices of G (and then of T ) are
connected by a path in T , which is also a path in G; so G is connected.
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• ”⇒” Consider a connected graph G = (V,E) which is not tree. Given an edge e of a cycle
of G, G − e = (V,E \ {e}) is a spanning subgraph of G which is also connected (because
by remark e is not a bridge of G). By repeating this process of deleting edges in cycles
until every edge which remains does not lie in a cycle and then it is a cut edge (i.e bridge),
we obtain a spanning subgraph T of G such that: T is connected and acyclic. So, T is a
spanning tree of G.

Corollary 15.5
If G = (V,E) is a connected graph with |V | = n ≥ 1, then |E| ≥ n− 1.

Proof.
By Theorem 28.3, G has a spanning tree T . By Theorem 28.1, |E(T )| = n− 1. As,

E(T ) ⊂ E(G) = E, then: |E| ≥ n− 1.

16 Characterization of bipartite Graphs

Remarks 16.1

1. A graph G is a bipartite if and only if each of its connected components is bipartite.

2. A graph G contains an odd cycle if and only if one of its connected components contains an
odd cycle.

Theorem 16.2
A graph is bipartite if and only if it contains no odd cycles.

Proof.
By remark 16.1, it suffices to prove the theorem in the case of connected graphs.

• ”⇒” Let G = G[X, Y ] be a connected bipartite graph. The vertices of any path in G belong
alternately to X and to Y . Thus, all paths connecting 2 vertices in different parts (one in
X and the other in Y ) is of odd length, and all paths connecting 2 vertices in the same part
(X or Y ) are of even length.
It follows that every cycle (α1, α2, ..., αp, α1) in G is of even length (because α1 and αp are in
different parts, so l(α1, α2, ..., αp) is odd and then l(α1, α2, ..., αp, α1) is even).

• ”⇐” Conversely; consider a connected graph G without odd cycles: By Theorem 28.3, G has
a spanning tree T = (V,E1) (where G = (V,E)). We may assume that: |V | ≥ 2.
Let x ∈ V . By Proposition 30.2, for each v ∈ V \ {x}, there is only one path Pv, in T ,
connecting v to x.
Let: X = {x} ∪ {v ∈ V \ {x} : l(Pv) is even} and Y = V \X.
Note That: Y = {v ∈ V \ {x} : l(Pv) is odd}, and Y ̸= ∅ (because NT (x) ̸= ∅ and
NT (x) ⊆ Y ).

Thus, {X, Y } is a partition of V (because X ̸= ∅, Y ̸= ∅, and X ∩ Y = ∅).
Fact 1: T [X] is an empty graph.

Indeed:
→ ∀α ∈ X, {α, x} /∈ E(T ) because NT (x) ⊆ Y .
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→ Assume that T [X] is a nonempty graph. So, there is an edge {α, β} ⊆ X \ {x}.
Assume, for example, that l(Pα) ≤ l(Pβ) and let Pα = (α1 = x, α2, ..., αp = α). As, l(Pα) ≤
l(Pβ), then β /∈ {αi; 1 ≤ i ≤ p}. So, P ′

α = (α1 = x, α2, ..., αp = α, β) is a path in T connecting
x to β. It ensues, that: l(Pβ) = l(P ′

α) = l(Pα) + 1. Then l(Pβ) is odd (because l(Pα) is even;
(α ∈ X)); contradicts the fact that β ∈ X.

Fact 2: T [Y ] is an empty graph.

Indeed:
Assume that T ([Y ] is a nonempty graph and consider an edge {α, β} of T ([Y ] with:
l(Pα) ≤ l(Pβ). Denote: Pα = (α1 = x, α2, ..., αp = α). Then, β /∈ {αi; 1 ≤ i ≤ p}. So,
Pβ = (α1 = x, α2, ..., αp = α, β) is a path in T connecting x to β. So, l(Pβ) = l(Pα) + 1.
Contradiction.

→ Thus, T is bipartite graph with the partition {X, Y }.

Now, we will prove that G is bipartite with {X, Y } as a bipartition.
For this, consider an edge e ∈ E \ E1 = E(G) \ E(T ). Denote: e = {u, v}.
Let P = (α1 = u, α2, ..., αq = v) the unique path in T , from u to v. By hypothesis, the cycle
C = P + e is of even length. Thus, l(P ) = l(C) − 1 is odd. As P is a path of the bipartite
graph T = T [X, Y ], then u and v belong to distinct parts (i.e one is in X and the other is in
Y ).
Thus, every edge e′ of G is such that: one end of e′ is in X and the other end is in Y .
So G is bipartite and G = G[X, Y ].

Corollary 16.3
Every tree is a bipartite graph.

Proof.
As a tree is without cycles, this corollary is an immediate consequence of Theorem 28.5.
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17 Exercises of Trees

N.B: All the graphs considered here are nontrivial

Exercise 17.1
Let F be a forest of order p and size q having k connected components. Obtain an expression

for q in terms of p and k.

Exercise 17.2

1. (a) Find all the trees, up to isomorphism, T is a regular graph.

(b) Find all the trees, up to isomorphism, T is a complete bipartite graph Kp,q (where
p, q ≥ 1).

2. (a) Find all the trees T , up to isomorphism, on {1, 2, ..., n} where n ≥ 3, and T has exactly
n− 1 leaves.

(b) Find all the trees T , up to isomorphism, on {1, 2, ..., n} where n ≥ 3, and T has exactly
2 leaves.

Exercise 17.3
Given an integer n ≥ 2, show that an increasing sequence D = (d1, d2, ..., dn) of positive integers

is the degree sequence of some tree if and only if
n∑

i=1

di = 2n− 2.

(Hint: Prove that if n ≥ 3, and
n∑

i=1

di = 2n− 2, then d1 = 1 and dn > 1, and use an induction on

n.)

Exercise 17.4
Show that any tree T has at least ∆(T ) leaves.

Exercise 17.5
Let T be a tree with v(T ) = n ≥ 3, and denote xi = |{v ∈ V (T ) : dT (v) = i}|.

1. Show that
n−1∑
i=3

(i− 2)xi = x1 − 2,

2. Count the number of nonisomorphic trees that have 5 leaves and no vertices of degree 2.

Exercise 17.6
Let G be a connected graph.

1. Let T be a spanning tree of G. Show that every cycle of G has an edge that is in the
complement T .

2. Let e ∈ E(G). Show that e is a bridge of G if and only if e belongs to every spanning tree of
G.
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Exercise 17.7
Let T be a tree of order k. Show that any graph G with δ(G) ≥ k−1 has a subgraph isomorphic

to T .
(Hint: Use an induction on k).

Exercise 17.8
Let T be a tree of order n ≥ 2.

1. Let u ∈ V (T ), and suppose that P : (v1 = u, v2, ..., vp = v) is a maximal path in T such that
u is an end of P . Show that v is a leaf of T .

2. Show that there is a vertex v of T such that NT (v) consists of leaves excepting possibly one
neighbour.

Exercise 17.9
Let A ⊆ N such that 0 /∈ A and 1 ∈ A. Show that there is a tree T such that A = {dT (v) : v ∈

V (T )}.
(Hint: Use an induction on n = |A|).

Exercise 17.10

1. Define the Prüfer code b(T ) = (p1, p2, ..., pn−2) of a tree T of order n.

2. Prove Cayley’s Theorem: There are exactly nn−2 trees on {1, 2, ..., n}.
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