Introduction to Discrete Structures

November 20, 2024

We will be only studying simple and finite graphs during this course

CHAPTER 1

GRAPHS

1 Definitions and Examples

1.1 Definitions

- 1. **Graph**: A graph is an ordered pair G = (V(G), E(G)) (or simply G = (V, E)) where, V(G) is a finite set, and E(G) is a subset of $[V]^2$ ($[V]^2$ is the set of the pairs $\{u, v\}$ such that $u \neq v$).
- 2. Let G = (V, E) be a graph
 - (a) Each element of V is a vertex of G.
 - (b) V is the vertex set of G.
 - (c) Each element of E is an edge of G.
 - (d) E is the edge set of G.
- 3. Occasionally, it is desirable to denote V(G) the vertex set of a graph G and E(G) its edge set. This is useful when we have two or more graphs under consideration.
- 4. Let G = (V, E) be a graph
 - (a) The order of G denoted by: |G| is the number |V|.
 - (b) The *size* of G denoted by: ||G|| is the number |E|.
- 5. Let G = (V, E) be a graph. An edge $\{u, v\}$ is denoted simply uv.
- 6. It is convenient to represent a graph by a diagram.

 In such representation, we indicate the vertices by points (or small circles), and we represent the edges by line segments (or curves) joining the two appropriate points.

1.2 Examples

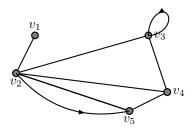
1. Let $G = (\{v_1, v_2, v_3, v_4\}, \{v_1v_2, v_1v_3, v_2v_3, v_3v_4\})$ be a graph



Two representations of the same graph G

Order of G is 4 Size of G is 4

2. Let $H = (\{v_1, v_2, v_3, v_4, v_5\}, \{v_1v_2, v_2v_3, v_3v_3, v_3v_4, v_2v_4, v_4v_5, v_2v_5, v_2v_5\})$ be a graph



Representation of H, the graph H is not a simple graph

Order of H is 5

Size of H is 8

We remak that, in this case, the graph H is not simple, because H has a double (multiple) edges (or because H has a loop).

1.3 Definitions

- 1. Let G = (V, E) be a graph.
 - (a) For $x \neq y \in V$, we say that the vertices x and y are adjacent when $\{x,y\}$ is an edge. If not, the vertices x and y are nonadjacent.
 - (b) If $e = \{x, y\}$ is an edge, x and y are the ends of e and x (and y) is incident with (to) the edge e.
 - (c) If uv and uw are different edges (i.e. $v \neq w$) we say that the edges uv and uw are adjacent.

Let $G = (\{u, v, w\}, \{uv, uw\})$ be a graph

Representation of G with the edges uv and uw are adjacent.

- 2. Let G = (V, E) be a graph, and let v be a vertex of G.
 - (a) Two adjacent vertices are *neighbours*.
 - (b) The set of neighbours of vertex v, called the neighborhood of v; is denoted by: $N_G(v)$ (or simply N(v)).
 - Let S be a subset of V. The neighborhood of S, denoted by N(S), is the set of vertices in V that have an adjacent vertex in S. The elements of N(S) are called the neighbours of S, noted that: $N(\{v\}) = N(v)$.
 - (c) The degree of the vertex v is the number $|N_G(v)|$ denoted by: $d_G(v)$ or deg(v) (or simply d(v)).
 - A vertex v of the graph G is called *vertex even* or *vertex odd* according to the parity of

its degree.

A vertex v of the graph G is called *isolated vertex*, if $d_G(v) = 0$, and a vertex of degree 1 in G is called a *leaf*.

- (d) The maximum degree of the vertices of G is denoted: $\Delta(G)$.
- (e) The minimum degree of the vertices of G is denoted: $\delta(G)$.
- (f) The average degree of the vertices of G denoted by: d(G) such that, $d(G) = \frac{1}{n} \sum_{v \in V} d(v)$, where $n = |V| \ge 1$.
- **N. B:** It is easily to see that: $\delta(G) \leq d(G) \leq \Delta(G)$.
- 3. Given a graph G, with the vertex set $V = \{v_1, v_2, ..., v_n\}$, the sequence $(d(v_1), ..., d(v_n))$ is called the degree sequence of G.

1.4 Remarks

- 1. Given a graph G = (V, E), we denote v(G) = |V| and e(G) = |E|.
- 2. In the book of Bondy and Murty:
 - The term "graph" always means 'finite graph', we call a graph with just one vertex trivial and all other graphs nontrivial.
 - Much of graph theory is concerned with the study of simple graphs.
 - The graph with no vertices (and then no edges) is the *null graph*. Unless otherwise specified, we consider *non null graphs* (i.e. $V(G) \neq \emptyset$).
- 3. Given a graph of order n, we can enumerate his vertices by: $v_1, v_2, ..., v_n$ such that, $d(v_1) \leq ... \leq d(v_n)$.
 - The increasing (or decreasing) sequence $(d(v_1), ..., d(v_n))$ is the degree sequence of G.

2 Vertex degrees

2.1 Properties of vertex degrees

Proposition 2.1 Let G be a graph, $\delta(G) \leq d(G) \leq \Delta(G)$.

Theorem 2.2 (Handshake lemma)

For any graph G, the sum of the degrees of the vertices of G equals twice the number of edges of G. (i.e: $\sum_{v \in V} d(v) = 2|E|$, where G = (V, E)).

Proof.

Let G = (V, E) be a graph and consider the sum $S = \sum_{v \in V} d(v)$. For $a \neq b \in V$, we count the edge $\{a, b\}$ **twice** if $\{a, b\} \in E$ (one in d(a) and one in d(b)), and we don't count the edge $\{a, b\}$ if $\{a, b\} \notin E$. So, S = 2|E|.

Corollary 2.3

Every graph contains an even number of odd vertices.

Proof.

Let G = (V, E) be a graph and consider $V(G) = A \cup B$ where, A (resp. B) is the set of even (resp. odd) vertices of G.

We have
$$\sum_{v \in V} d(v) = \sum_{v \in A} d(v) + \sum_{v \in B} d(v) = 2|E|$$
, hence $\sum_{v \in B} d(v) = 2|E| - \sum_{v \in A} d(v)$, then $\sum_{v \in B} d(v)$

is even. It ensues that |B| is even. (Note: $\sum_{v \in \emptyset} d(v) = 0$).

Theorem 2.4 (Pigeonhole Principle)

Let S be a finite set with |S| = n, and let $S_1, ..., S_k$ be a partition of S into k subsets such that: $1 \le k < n$. Then at least one subset S_i contains at least $(\lfloor \frac{n-1}{k} \rfloor + 1)$ elements (let y be a real number, |y| is the greatest integer p, $p \le y$, and |y| is called the floor of y).

Proof.

By contradiction. If not: $\forall i \in \{1, ..., k\}, |S_i| \leq \lfloor \frac{n-1}{k} \rfloor$.

So,
$$|V| = \sum_{1 \le i \le k} |S_i| \le k \cdot \frac{n-1}{k} = n - 1 < n$$
.

Thus |V| = n < n; contradiction.

Corollary 2.5

Given a graph G = (V, E) on $n \ge 2$ vertices, there are $x \ne y \in V$ such that: d(x) = d(y).

Proof.

Given G = (V, E) a graph, the first remark, if there is an isolated vertex x (i.e. d(x) = 0), then: $(\forall y \in V, d(y) \le n - 2)$ and the second remark, if there is a vertex x such that d(x) = n - 1, then: $(\forall y \in V, d(y) \ge 1)$.

By the first remark and the second remark we deduce $(\forall v \in V, d(v) \in \{0, ..., n-2\})$ or $(\forall v \in V, d(v) \in \{1, ..., n-1\})$.

Thus, the *n* values: $d(v_1), ..., d(v_n)$ (where $V = \{v_1, ..., v_n\}$) are all in set *A* with: |A| = n - 1. So, we conclude by the **Pigeonhole Principle**.

Corollary 2.6 (Particular case of Pigeonhole Principle)

If we put n pigeons in k cages such that k < n, then at least one cage contains at least two pigeons.

2.2 Exercises

- 1. (a) Show that there is no graph with degree sequence: (2, 3, 3, 4, 4, 5).
 - (b) Show that there is no graph with degree sequence: (2, 3, 4, 4, 4, 6, 6, 6, 9).
 - (c) Show that there is no graph with degree sequence: (1,3,3,3).
 - (d) Show that there is no graph with degree sequence: (1, 2, 4, 5, 6, 6, 7, 8, 9).
 - (e) Show that there is no graph with degree sequence: (1, 2, 3, 4, 4).
 - (f) Show that there is no graph with degree sequence: (2,3,4,5,5,5).

- 2. Show that, given a group of $n \ge 2$ students, there are at least two students (from this group) having the same number of friends (in the group).
- 3. We have 15 computers. Is it possible to connect each of them to exactly 3 others?
- 4. Let p, n two odd integers, such that p < n. We have n computers. Is it possible to connect each of them to exactly p others?

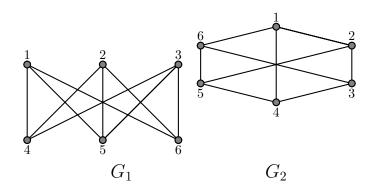
3 Isomorphic Graph

3.1 Definitions

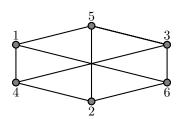
- 1. An isomorphism from graph G = (V(G), E(G)) onto a graph H = (V(H), E(H)) is a bijection $f: V(G) \to V(H)$ such that: $\forall x, y \in V(G), (xy \in E(G) \Leftrightarrow f(x)f(y) \in E(H))$.
 - We say that G is *isomorphic* to H (or G and H are isomorphic), and we denoted $G \simeq H$ (or $G \approx H$ or $G \cong H$), if there exists an isomorphism from G onto H.
- 2. An isomorphism from a graph G onto G itself is called: an automorphism of G.
 - The set of automorphisms of G is denoted: Aut(G).
- 3. The complement of a graph G = (V, E) is the graph $\overline{G} = (V, \overline{E})$ where, $\overline{E} = [V]^2 \setminus E$ (So, $\forall x \neq y \in V$, $(xy \in \overline{E} \Leftrightarrow xy \notin E)$).
 - A graph G is called *self-complementary* if it is isomorphic to its complement \overline{G} .

3.2 Examples

1. Let $G_1 = (\{1, 2, 3, 4, 5, 6\}, \{\{1, 4\}, \{1, 5\}, \{1, 6\}, \{2, 4\}, \{2, 5\}, \{2, 6\}, \{3, 4\}, \{3, 5\}, \{3, 6\}\})$ and let $G_2 = (\{1, 2, 3, 4, 5, 6\}, \{\{1, 2\}, \{1, 4\}, \{1, 6\}, \{2, 3\}, \{2, 5\}, \{3, 4\}, \{3, 6\}, \{4, 5\}\{5, 6\}\})$



The drawing of G_1 can be transformed into the following G_2 by first moving vertex 2 to the bottom of the diagram, and the moving 5 to the top, we obtained the diagram of the graph G_1 as follows:



 G_1

So, $f = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 6 & 4 & 2 & 5 & 1 & 3 \end{pmatrix}$ is an isomorphism from G_1 onto G_2 .

2. Let $G_3 = (\{x, y, z, u, v, w\}, \{xy, xz, yz, uv, uw, vw, xu, yv, zw\})$

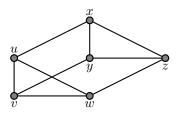
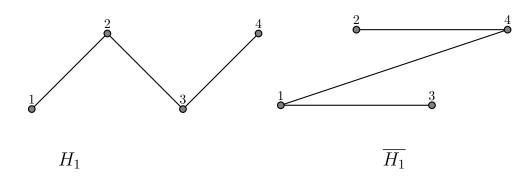


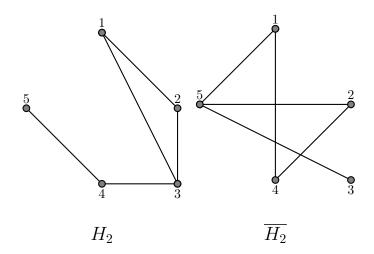
Diagram of G_3 is the graph of prism. G_3 is not isomorphic to G_2 ($G_3 \ncong G_2$).

3. • Let $H_1 = (\{1, 2, 3, 4\}, \{\{1, 2\}, \{2, 3\}, \{3, 4\}\})$ be a graph, $\overline{H_1} = (\{1, 2, 3, 4\}, \{\{1, 3\}, \{1, 4\}, \{2, 4\}\})$



The graph H_1 is self-complementary graph.

• Let $H_2 = (\{1, 2, 3, 4, 5\}, \{\{1, 2\}, \{1, 3\}, \{2, 3\}, \{3, 4\}, \{4, 5\}\})$ be a graph, $\overline{H_2} = (\{1, 2, 3, 4, 5\}, \{\{1, 4\}, \{1, 5\}, \{2, 4\}, \{2, 5\}, \{3, 5\}\})$



The graph H_2 is not self-complementary graph.

3.3 Remarks

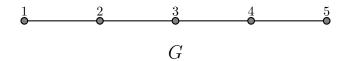
1. The relation " is isomorphic to" is an equivalence relation on the class of all graphs.

Indeed:

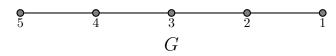
- Let G = (V, E) be a graph, we have id_V is an isomorphism from G onto G.
- Let G and G' be two graphs, if f is an isomorphism from G onto G', the inverse mapping f^{-1} is an isomorphism from G' onto G.
- The composite mapping, $f_2 \circ f_1$, of two isomorphisms is an isomorphism.
- 2. Given an isomorphism f from G = (V, E) onto G' = (V', E'), then:
 - $\forall x \in V, f(N_G(x)) = N_{G'}f(x); \text{ so } d_{G'}(f(x)) = d_G(x).$
 - |V| = |V'|, |E| = |E'|, and G and G' have the same degree sequence.
- 3. Let G(V, E) be a graph. $(Aut(G), \circ)$ is a group (it is a subgroup of (S_V, \circ) the group of permutations of V). The group (Aut(G) is called the *automorphism group of G*.

Example

Let $G = (\{1, 2, 3, 4, 5\}, \{\{1, 2\}, \{2, 3\}, \{3, 4\}, \{4, 5\}\})$ be a graph.



The graph G is too $G = (\{1, 2, 3, 4, 5\}, \{\{5, 4\}, \{4, 3\}, \{3, 2\}, \{2, 1\}\}.$



 $f = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 5 & 4 & 3 & 2 & 1 \end{pmatrix}$ is an automorphism.

3.4 Properties

Proposition 3.1

If a graph G is self-complementary, then his order n satisfies: $n \equiv 0 \pmod{4}$ or $n \equiv 1 \pmod{4}$ (i. $e \ n = 4p \ or \ n = 4p + 1$, where $p \in \mathbb{N}$).

Proof.

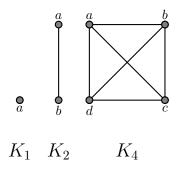
Let G=(V,E) be a self-complementary graph, then $|E|=|[V]^2\setminus E|$, hence $2|E|=|[V]^2|=\binom{n}{2}=\frac{n(n-1)}{2}$, therefore $|E|=\frac{n(n-1)}{4}$, since $|E|\in\mathbb{N}$, hence 4 devises n(n-1), therefore $n\equiv 0\ (mod\ 4)$ or $n\equiv 1\ (mod\ 4)$.

4 Particular Graphs

4.1 Complete Graph

- A complete graph is a graph in which any two vertices (different vertices) are adjacent.
- Up to isomorphy, for each integer $n \geq 1$, there is a unique complete graph of order n. It is denoted: K_n .

Examples:



4.2 Empty Graph

- An empty graph is a graph G = (V, E) with: $E = \emptyset$.
- Up to isomorphy, for each integer $n \geq 1$, there is a unique empty graph of order n. It is denoted: D_n .

Examples:

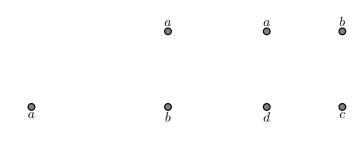


Diagram of D_1 Diagram of D_2 Diagram of D_4

4.3 Paths

A path is a graph isomorphic to the graph: $P_n = (\{1, ..., n\}, \{\{i, i+1\}; 1 \le i \le n-1\})$. **Examples:**

Diagram of P_1 Diagram of P_2

Diagram of P_4

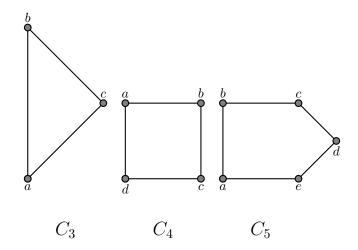
4.4 Cycles

- 1. A cycle on $n \ge 3$ is a graph isomorphic to the graph: $C_n = (\{1, ..., n\}, \{\{i, i+1\}; 1 \le i \le n-1\} \cup \{\{1, n\}\}).$
- 2. The *length* of a path or a cycle is the number of its edges.
 - k-path (resp. k-cycle) is a path (resp. cycle) of length k.
 - A k-path (resp. k-cycle) is odd or even according to the parity of length k.
 - A 3-cycle is often called a *triangle*.

Remark 4.1

The cycle C_n is obtained from the path P_n by adding the edge $\{1, n\}$.

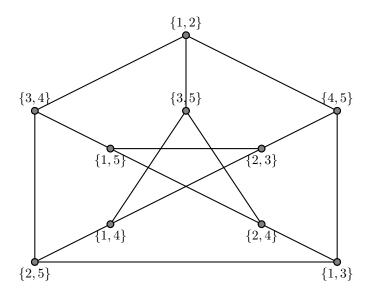
Examples:



4.5 Petersen graph

A Petersen graph is a graph G = (V, E), up to isomorphy, defined by: $V = \mathcal{P}_2(\{1, 2, 3, 4, 5\}) = \{\{1, 2\}, \{1, 3\}, \{1, 4\}, \{1, 5\}, \{2, 3\}, \{2, 4\}, \{2, 5\}, \{3, 4\}, \{3, 5\}, \{4, 5\}\}$ and for $i \neq j \in \{1, 2, 3, 4, 5\}$ and $\alpha \neq \beta \in \{1, 2, 3, 4, 5\}$ where: $(\{\{i, j\}, \{\alpha, \beta\}\} \in E) \Leftrightarrow (\{i, j\} \cap \{\alpha, \beta\} = \emptyset)$

Diagram of Petersen graph

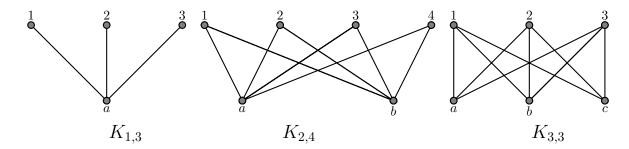


Petersen graph

4.6 Bipartite graphs

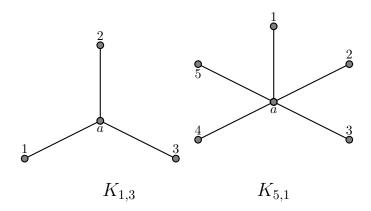
- 1. A Bipartite graph is a graph G = (V, E), such that V can be partitioned into two subsets X and Y such that every edge has one end in X and one in Y.
 - Such a partitioned $\{X,Y\}$ is called a partition of the graph G;X and Y are the parts of V, in this case G is denoted: G[X,Y].
- 2. If G[X,Y] is a bipartite graph such that every $x \in X$ is joined to every $y \in Y$, then G is called a *Complete bipartite graph*.
 - Up to isomorphy, we denoted $K_{p,q}$ the complete bipartite graph G[X,Y] with: |X|=p and |Y|=q.

Examples:



4.7 Star graphs

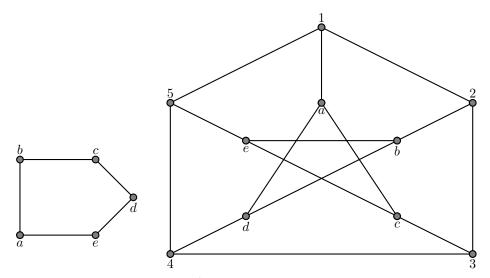
A Star is a complete bipartite graph G[X,Y] with: (|X|=1 or |Y|=1). **Examples:**



4.8 Regular graphs

- A k-regular graph, where $k \in \mathbb{N}$ is a graph G = (V, E), such that: $\forall x \in V, d(x) = k$.
- A regular graph is a graph which is k-regular graph for some k.

Examples:



 C_5 is a 2-regular graph

A Patersen graph is 3-regular graph

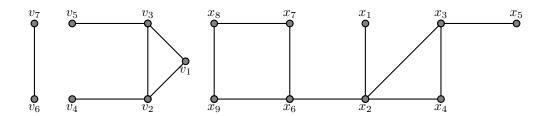
In general, C_n is a 2-regular graph.

4.9 Disconnected graphs

- A disconnected graph is a graph G = (V, E), where V can be partitioned into $\{X, Y\}$ such that: $(X \neq \emptyset, Y \neq \emptyset, \forall (x, y) \in X \times Y : \{x, y\} \notin E)$.
- If a graph G is not disconnected, we say that G is connected graph.

Examples:

- Given a graph $G = (\{v_1, v_2, v_3, v_4, v_5, v_6, v_7\}, \{v_1v_2, v_2v_3, v_3v_1, v_2v_4, v_3v_5, v_6v_7\}).$
- Given a graph $H = (\{x_1, x_2, x_3, x_4, x_5, x_6, x_7, x_8, x_9\}, \{x_1x_2, x_2x_3, x_3x_4, x_2x_4, x_2x_6, x_3x_5, x_6x_7, x_7x_8, x_8x_9, x_6x_9\}).$



G is disconnected graph

H is connected graph

5 Degree Sequence

5.1 Definition

Definition 5.1

We say that an increasing sequence $D = (d_1, ..., d_n)$ is graphic if there is a graph G having D as the degree sequence (i.e. D = DEG(G)).

Remarks 5.2

If an increasing sequence $D = (d_1, ..., d_n)$ is graphic, then

- 1. $d_n \leq n 1$.
- 2. D has an even odd terms.
- 3. If $d_1 = 0$, then $d_n \le n 2$. If $d_n = n - 1$, then $d_1 \ge 1$.
- 4. We remark there are $i \neq j$ such that $d_i = d_j$.

Notation 5.3

- 1. $D = (d_1, ..., d_n)$ an increasing sequence of integers with: $0 < d_1 \le ... \le d_n < n$, where $n \ge 2$.
- 2. $D^{"}=(d_{1}^{"},...,d_{n-1}^{"})$ the sequence obtaining, from D, as follows:
 - delete d_n from D and
 - Subtract 1 from each of the d_n last remaining terms.
- 3. $D' = (d'_1, ..., d'_{n-1})$ the increasing sequence consists of integers $\{d''_1, ..., d''_{n-1}\}$ arranged in ascending order.

5.2 Havel-Hakimi Theorem

Problematic:

A degree sequence can be obtained from graph. But how to get graph from degree sequence? There can be many graph from a degree sequence or there can not be any graph.

So, how to know if a degree sequence is a **graphic** sequence?

The solution is the Havel-Hakimi Theorem.

Theorem 5.4 Havel-Hakimi Theorem

The sequence D is graphic if and only if the sequence D' is graphic.

Consequence

- 1. This theorem reduces the study of D to the study D'.
- 2. Thus, we have an algorithmic test to check whether D is graphic and to generate a graph whenever one exists.

We remark, this theorem is easily deduced from the following lemma.

Lemma 5.5

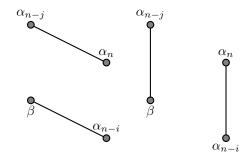
Let $D = (d_1, ..., d_n)$ be a graphic sequence with: $d_n > 0$ (and then $n \ge 2$). Then there is a graph G = (V, E) where, $V = \{x_1, ..., x_n\}$, such that:

- $\forall i \in \{1, ..., n\}, d_G(x_i) = d_i, and$
- $N_G(x_n) = \{x_{n-i}; \ 1 \le i \le d_n\}$

Proof.

By contradiction.

- 1. Consider a graph $G = (\{\alpha_1, ..., \alpha_n\}, E)$ with:
 - (a) $\forall i, d_G(\alpha_i) = d_i$
 - (b) The cardinality $|N_G(\alpha_n) \cap \{\alpha_{n-i}; 1 \leq i \leq d_n\}|$ is **maximum** (for all graphs G with: DEG(G) = D).
- 2. So,
 - (a) $\exists i, 1 \leq i \leq d_n, \{\alpha_{n-i}, \alpha_n\} \notin E$
 - (b) $\exists j, d_n + 1 \le j \le n 1, \{\alpha_{n-j}, \alpha_n\} \in E$
 - (c) We may assume that: $d_{n-j} < d_{n-i}$
 - (d) As $\alpha_n \in N_G(\alpha_{n-j}) \setminus N_G(\alpha_{n-i})$, there are $\beta \neq \lambda \in N_G(\alpha_{n-i}) \setminus N_G(\alpha_{n-j})$, (with $\beta \neq \alpha_{n-j}$).
- 3. Thus, β , α_{n-j} , α_{n-i} and α_n are 4 distinct vertices of G, with: $\{\beta, \alpha_{n-i}\} \in E(G)$ and $\{\alpha_{n-j}, \alpha_n\} \in E(G)$; and $\{\beta, \alpha_n\}$ is an edge or not.
- 4. We consider the graph G' such that, β , α_{n-j} , α_{n-i} and α_n are 4 distinct vertices verifies of G', with $\{\beta, \alpha_{n-j}\} \in E(G')$ and $\{\alpha_{n-i}, \alpha_n\} \in E(G')$, the other edges are the same on G, hence, DEG(G) = DEG(G') = D, is a **contradiction** by the cardinality $|N_G(\alpha_n) \cap \{\alpha_{n-i}; 1 \leq i \leq d_n\}|$ is maximum.



$$G[\{\beta, \alpha_{n-j}, \alpha_{n-i}, \alpha_n\}]$$
 $G'[\{\beta, \alpha_{n-j}, \alpha_{n-i}, \alpha_n\}]$

Algorithm of Havel-Hakimi

1. Step 1

Sort the sequence in **increasing sequence** $D = (d_1, ..., d_n)$

2. **Step** 2

- Remove the term d_n in a sequence D.
- Subtract 1 from each the d_n last terms in the sequence $(d_1, ..., d_{n-1})$.

3. **Step** 3

- If a negative number in this new sequence, we stopped and the sequence $D = (d_1, ..., d_n)$ is not graphic.
- If all number zeros in this new sequence, we stopped and the sequence $D = (d_1, ..., d_n)$ is graphic.
- Otherwise, we arranged in ascending order this new sequence, consider $D' = (d'_1, ..., d'_{n-1})$ the new increasing sequence obtained, and repeat from step 1.

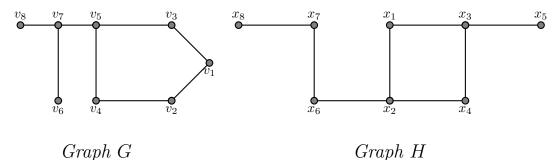
Example 5.6

Prove that the sequence (1, 2, 3, 5, 3, 1, 2, 3) is a graphic sequence and give an example of a graph G satisfying DEG(G) = D.

Remark 5.7 For the same degree sequence that is graphic, it is possible to find more than one graph which are not isomorphic.

Example 5.8

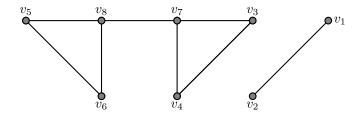
Given a graph $G = (\{v_1, v_2, v_3, v_4, v_5, v_6, v_7, v_8\}, \{v_1v_2, v_3v_1, v_2v_4, v_3v_5, v_4v_5, v_5v_7, v_6v_7, v_7v_8\}),$ and a graph $H = (\{x_1, x_2, x_3, x_4, x_5, x_6, x_7, x_8\}, \{x_1x_2, x_1x_3, x_3x_4, x_2x_4, x_2x_6, x_3x_5, x_6x_7, x_7x_8\}).$



5.2 Havel-Hakimi Theorem

The two graphs G and H are not isomorphic, and they have the same degree sequence (1, 1, 2, 2, 2, 2, 3, 3).

Using the Havel-Hakimi algorithm for the same degree sequence (1, 1, 2, 2, 2, 2, 3, 3), we find the graph K as follows:



Graph K

The graphs K and G are not isomorphic, and the graphs K and H are not isomorphic.

Exercise 5.9

- 1. Is the increasing sequence $D = (d_1, ..., d_n)$ a graphic sequence?
 - (a) D = (1, 2, 3, 4, 4, 5, 6, 7)
 - (b) D = (2, 2, 3, 3, 6, 6, 6, 6)
 - (c) D = (2, 2, 3, 4, 4, 6, 6, 7)
 - (d) D = (1, 1, 2, 4, 6, 7, 7, 8)
- 2. In the case, where D is graphic, give an example of graph G satisfying DEG(G) = D.

6 Exercises of Graphs

Exercise 6.1

- 1. If you pick five cards from a standard deck of 52 cards, then at least two will be of the same suit.
- 2. If you pick five numbers from the integers 1 to 8, then two of them must add up to nine.
- 3. In any group with two or more people, there must be at least two people who have the same number of friends.

(Assume that "friend" is symmetric-if x is a friend of y, then y is a friend of x.)

4. In a group of six people, there will always be three people that are mutual friends or mutual strangers.

(Assume that "friend" is symmetric-if x is a friend of y, then y is a friend of x.)

Exercise 6.2

- 1. Let G be a graph of order 9 such that each vertex has degree 5 or 6. Prove that at least five vertices have degree 6 or at least six vertices have degree 5.
- 2. Find the values of n such that path P_n (resp. cycle C_n) is self-complementary.
- 3. Find a self complementary graph of order 4n (resp. 4n + 1) for each $(n \ge 1)$.
- 4. (a) Show that every graph G has a path of length $\delta(G)$.
 - (b) Show that if a graph G is connected and nontrivial graph, then the graph G is a complete graph or G has a path of length $\delta(G) + 1$.
- 5. Prove that the 4-cube Q_4 is 4-regular, connected, and bipartite.

Exercise 6.3

- 1. Let G[X,Y] be a bipartite graph, where $|X|=r\geq 1$ and $|Y|=s\geq 1$, of order n and size m.
 - (a) Show that: $m \leq rs$.
 - (b) Deduce that: $m \leq \frac{n^2}{4}$.
 - (c) Describe the bipartite graphs G for which equality holds in question (b).
- 2. Let G[X,Y] be a bipartite graph.
 - (a) Show that: $\sum_{v \in X} d(v) = \sum_{v \in Y} d(v).$
 - (b) Deduce that if G is k-regular with $k \ge 1$, then |X| = |Y|.
- 3. Find a k-regular graph of order 8 for $k \in \{4, 5\}$.
- 4. Consider two integers k and n with $k \geq 0$, $n \geq 1$. Prove the equivalence between the following two assertions.

- (a) There exists a k-regular graphs of order n.
- (b) The integer kn is even and $k \leq n-1$.
- 5. We define the graph is even if all its vertices are even. Prove that the number of even graph on $\{1, 2, ..., n + 1\}$ equals the number of graphs on $\{1, ..., n\}$.

Exercise 6.4

- 1. Show that: a graph is bipartite if and only if it contains no odd cycle.
- 2. Let G = (V, E) be a graph.
 - (a) Show that if $\delta(G) \geq 2$, then G contains a cycle.
 - (b) Show that if G is a simple graph and $\delta(G) \geq 2$, then G contains a cycle of length at least $\delta(G) + 1$.

Exercise 6.5

- 1. (a) Is the increasing sequence $D = (d_1, ..., d_n)$ a graphic sequence?
 - i. D = (1, 2, 3, 4, 4, 5, 6, 7)
 - ii. D = (2, 2, 3, 3, 6, 6, 6, 6)
 - iii. D = (2, 2, 3, 4, 4, 6, 6, 7)
 - iv. D = (1, 1, 2, 4, 6, 7, 7, 8)
 - (b) In the case, where D is graphic, give an example of graph G satisfying DEG(G) = D.
- 2. Consider the two sequences: $D_1 = (1, 1, 3, 3, 3, 3, 5, 6, 8, 9)$ and $D_2 = (3, 3, 3, 3, 3, 5, 6, 6, 6, 6, 6, 6, 6, 6)$
 - (a) Show that: D_1 is not graphic.
 - (b) Show that: D_2 is graphic and give a graph G with $DEG(G) = D_2$.
 - (c) Show that there is no bipartite graph G such that $DEG(G) = D_2$.

Exercise 6.6

- 1. If n + 1 numbers are selected from the set $\{1, 2, ..., 2n\}$, then one will divide another evenly.
- 2. Given a sequence $a_1, a_2, ..., a_{n^2+1}$ of any n^2+1 different numbers, there is either an increasing subsequence of (n+1) terms or else a decreasing subsequence of (n+1) terms.

Exercise 6.7

- 1. In any group of 6 people there are either three mutual friends or else three mutual strangers.
- 2. In any set of 10 people there is either a set of three mutual strangers or four mutual friends.
- 3. In any set of 10 people there is either a set of three mutual friends or a four mutual strangers.
- 4. In any set of 20 people there is either a set of four mutual friends or a four mutual strangers.

Exercise 6.8

Let G = (V, E) be a graph, with |V| = 2n, without triangles (i.e. there is no subset $X = \{a, b, c\}$ of V such that: $\{a, b\}, \{b, c\}, \{c, a\} \in E$).

- 1. (a) Find the value of |E| when G is n-regular.
 - (b) Find an example where G is n-regular.
- 2. Assume that G is not n-regular.
 - (a) Show that: $(\forall x \in V, d(x) \le n) \Rightarrow (|E| < n^2).$
 - (b) Show that: $|E| < n^2$.

Exercise 6.9

Find all graph self complementary, up to isomorphy, of order 5 or less.

Exercise 6.10

We know that a graph with $n \ge 2$ vertices has at least one pair of vertices of equal degrees. Find all graphs with exactly one pair of vertices with equal degrees. What are their degree sequences?

(Hint: Begin with $n \in \{2, 3, 4\}$. Use a recursive construction. Can degree 0 or n-1 occur twice?)