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We will be only studying simple and finite graphs during
this course
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GRAPHS 1 DEFINITIONS AND EXAMPLES

1 Definitions and Examples

1.1 Definitions

1. Graph : A graph is an ordered pair G = (V (G), E(G)) ( or simply G = (V,E)) where, V (G)
is a finite set, and E(G) is a subset of [V ]2 ([V ]2 is the set of the pairs {u, v} such that u ̸= v).

2. Let G = (V,E) be a graph

(a) Each element of V is a vertex of G.

(b) V is the vertex set of G.

(c) Each element of E is an edge of G.

(d) E is the edge set of G.

3. Occasionally, it is desirable to denote V (G) the vertex set of a graph G and E(G) its edge
set. This is useful when we have two or more graphs under consideration.

4. Let G = (V,E) be a graph

(a) The order of G denoted by: |G| is the number |V |.
(b) The size of G denoted by: ∥G∥ is the number |E|.

5. Let G = (V,E) be a graph. An edge {u, v} is denoted simply uv.

6. It is convenient to represent a graph by a diagram.
In such representation, we indicate the vertices by points (or small circles), and we represent
the edges by line segments (or curves) joining the two appropriate points.

1.2 Examples

1. Let G = ({v1, v2, v3, v4}, {v1v2, v1v3, v2v3, v3v4}) be a graph

v1

v2

v3v4

v1

v2

v3

v4

Two representations of the same graph G

Order of G is 4
Size of G is 4

2. Let H = ({v1, v2, v3, v4, v5}, {v1v2, v2v3, v3v3, v3v4, v2v4, v4v5, v2v5, v2v5}) be a graph

3 MONCEF BOUAZIZ



GRAPHS 1 DEFINITIONS AND EXAMPLES

•
v1

• v4

• v3

•
v2

•
v5

Representation of H, the graph H is not a simple graph

Order of H is 5
Size of H is 8
We remak that, in this case, the graph H is not simple, because H has a double (multiple)
edges (or because H has a loop).

1.3 Definitions

1. Let G = (V,E) be a graph.

(a) For x ̸= y ∈ V , we say that the vertices x and y are adjacent when {x, y} is an edge. If
not, the vertices x and y are nonadjacent.

(b) If e = {x, y} is an edge, x and y are the ends of e and x (and y) is incident with (to)
the edge e.

(c) If uv and uw are different edges (i.e: v ̸= w) we say that the edges uv and uw are
adjacent.

Let G = ({u, v, w}, {uv, uw}) be a graph

u

vw

Representation of G with the edges uv and uw are adjacent.

2. Let G = (V,E) be a graph, and let v be a vertex of G.

(a) Two adjacent vertices are neighbours.

(b) The set of neighbours of vertex v, called the neighborhood of v; is denoted by: NG(v)
(or simply N(v)).
Let S be a subset of V . The neighborhood of S, denoted by N(S), is the set of vertices
in V that have an adjacent vertex in S. The elements of N(S) are called the neighbours
of S, noted that: N({v}) = N(v).

(c) The degree of the vertex v is the number | NG(v) | denoted by: dG(v) or deg(v) (or
simply d(v)).
A vertex v of the graph G is called vertex even or vertex odd according to the parity of
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GRAPHS 2 VERTEX DEGREES

its degree.
A vertex v of the graph G is called isolated vertex, if dG(v) = 0, and a vertex of degree
1 in G is called a leaf.

(d) The maximum degree of the vertices of G is denoted: ∆(G).

(e) The minimum degree of the vertices of G is denoted: δ(G).

(f) The average degree of the vertices of G denoted by: d(G) such that, d(G) =
1

n

∑
v∈V

d(v),

where n = |V | ≥ 1.

N. B: It is easily to see that: δ(G) ≤ d(G) ≤ ∆(G).

3. Given a graph G, with the vertex set V = {v1, v2, ..., vn}, the sequence (d(v1), ..., d(vn)) is
called the degree sequence of G.

1.4 Remarks

1. Given a graph G = (V,E), we denote v(G) = |V | and e(G) = |E|.

2. In the book of Bondy and Murty:

• The term ”graph” always means ’finite graph’, we call a graph with just one vertex
trivial and all other graphs nontrivial.

• Much of graph theory is concerned with the study of simple graphs.

• The graph with no vertices (and then no edges) is the null graph.
Unless otherwise specified, we consider non null graphs (i.e: V (G) ̸= ∅).

3. • Given a graph of order n, we can enumerate his vertices by: v1, v2, ..., vn such that,
d(v1) ≤ ... ≤ d(vn).

• The increasing (or decreasing) sequence (d(v1), ..., d(vn)) is the degree sequence of G.

2 Vertex degrees

2.1 Properties of vertex degrees

Proposition 2.1 Let G be a graph, δ(G) ≤ d(G) ≤ ∆(G).

Theorem 2.2 (Handshake lemma)
For any graph G, the sum of the degrees of the vertices of G equals twice the number of edges

of G. (i.e:
∑
v∈V

d(v) = 2|E|, where G = (V,E)).

Proof.
Let G = (V,E) be a graph and consider the sum S =

∑
v∈V

d(v). For a ̸= b ∈ V , we count the

edge {a, b} twice if {a, b} ∈ E ( one in d(a) and one in d(b)), and we don’t count the edge {a, b}
if {a, b} /∈ E. So, S = 2|E|.
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Corollary 2.3
Every graph contains an even number of odd vertices.

Proof.
Let G = (V,E) be a graph and consider V (G) = A ∪ B where, A (resp. B) is the set of even

(resp. odd) vertices of G.

We have
∑
v∈V

d(v) =
∑
v∈A

d(v) +
∑
v∈B

d(v) = 2|E|, hence
∑
v∈B

d(v) = 2|E| −
∑
v∈A

d(v), then
∑
v∈B

d(v)

is even. It ensues that |B| is even. ( Note:
∑
v∈∅

d(v) = 0).

Theorem 2.4 (Pigeonhole Principle)
Let S be a finite set with |S| = n, and let S1, ..., Sk be a partition of S into k subsets such that:
1 ≤ k < n. Then at least one subset Si contains at least (⌊n−1

k
⌋ + 1) elements ( let y be a real

number, ⌊y⌋ is the greatest integer p, p ≤ y, and ⌊y⌋ is called the floor of y).

Proof.
By contradiction. If not: ∀i ∈ {1, ..., k}, |Si| ≤ ⌊n−1

k
⌋.

So, |V | =
∑
1≤i≤k

|Si| ≤ k.
n− 1

k
= n− 1 < n.

Thus |V | = n < n; contradiction.

Corollary 2.5
Given a graph G = (V,E) on n ≥ 2 vertices, there are x ̸= y ∈ V such that: d(x) = d(y).

Proof.
Given G = (V,E) a graph, the first remark, if there is an isolated vertex x (i.e: d(x) = 0),

then: (∀y ∈ V, d(y) ≤ n− 2) and the second remark, if there is a vertex x such that d(x) = n− 1,
then: (∀y ∈ V, d(y) ≥ 1).
By the first remark and the second remark we deduce (∀v ∈ V, d(v) ∈ {0, ..., n− 2}) or
(∀v ∈ V, d(v) ∈ {1, ..., n− 1}).
Thus, the n values: d(v1), ..., d(vn) (where V = {v1, ..., vn}) are all in set A with: |A| = n− 1. So,
we conclude by the Pigeonhole Principle.

Corollary 2.6 (Particular case of Pigeonhole Principle)
If we put n pigeons in k cages such that k < n, then at least one cage contains at least two pigeons.

2.2 Exercises

1. (a) Show that there is no graph with degree sequence: (2, 3, 3, 4, 4, 5).

(b) Show that there is no graph with degree sequence: (2, 3, 4, 4, 4, 6, 6, 6, 9).

(c) Show that there is no graph with degree sequence: (1, 3, 3, 3).

(d) Show that there is no graph with degree sequence: (1, 2, 4, 5, 6, 6, 7, 8, 9).

(e) Show that there is no graph with degree sequence: (1, 2, 3, 4, 4).

(f) Show that there is no graph with degree sequence: (2, 3, 4, 5, 5, 5).
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2. Show that, given a group of n ≥ 2 students, there are at least two students (from this group)
having the same number of friends (in the group).

3. We have 15 computers. Is it possible to connect each of them to exactly 3 others?

4. Let p, n two odd integers, such that p < n. We have n computers. Is it possible to connect
each of them to exactly p others?

3 Isomorphic Graph

3.1 Definitions

1. • An isomorphism from graph G = (V (G), E(G)) onto a graph H = (V (H), E(H)) is a
bijection f : V (G)→ V (H) such that: ∀x, y ∈ V (G), (xy ∈ E(G)⇔ f(x)f(y) ∈ E(H)).

• We say that G is isomorphic to H (or G and H are isomorphic), and we denoted G ≃ H
(or G ≈ H or G ∼= H), if there exists an isomorphism from G onto H.

2. • An isomorphism from a graph G onto G itself is called: an automorphism of G.

• The set of automorphisms of G is denoted: Aut(G).

3. • The complement of a graph G = (V,E) is the graph G = (V,E) where, E = [V ]2 \ E
(So, ∀x ̸= y ∈ V, (xy ∈ E ⇔ xy /∈ E)).

• A graph G is called self-complementary if it is isomorphic to its complement G.

3.2 Examples

1. Let G1 = ({1, 2, 3, 4, 5, 6}, {{1, 4}, {1, 5}, {1, 6}, {2, 4}, {2, 5}, {2, 6}, {3, 4}, {3, 5}, {3, 6}})
and let G2 = ({1, 2, 3, 4, 5, 6}, {{1, 2}, {1, 4}, {1, 6}, {2, 3}, {2, 5}, {3, 4}, {3, 6}, {4, 5}{5, 6}})

1 2 3

4 5 6

G1

6

4

2

5

1

3

G2

The drawing of G1 can be transformed into the following G2 by first moving vertex 2 to the
bottom of the diagram, and the moving 5 to the top, we obtained the diagram of the graph
G1 as follows:
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1

2

3

4

5

6

G1

So, f =
(
1 2 3 4 5 6
6 4 2 5 1 3

)
is an isomorphism from G1 onto G2.

2. Let G3 = ({x, y, z, u, v, w}, {xy, xz, yz, uv, uw, vw, xu, yv, zw})

u

w

y

v

x

z

Diagram of G3 is the graph of prism.
G3 is not isomorphic to G2 (G3 ≇ G2).

3. • Let H1 = ({1, 2, 3, 4}, {{1, 2}, {2, 3}, {3, 4}}) be a graph,
H1 = ({1, 2, 3, 4}, {{1, 3}, {1, 4}, {2, 4}})

1

2

3

4

H1

1

2

3

4

H1

The graph H1 is self-complementary graph.

• Let H2 = ({1, 2, 3, 4, 5}, {{1, 2}, {1, 3}, {2, 3}, {3, 4}, {4, 5}} be a graph,
H2 = ({1, 2, 3, 4, 5}, {{1, 4}, {1, 5}, {2, 4}, {2, 5}, {3, 5}}
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1

25

4 3

H2

1

25

4 3

H2

The graph H2 is not self-complementary graph.

3.3 Remarks

1. The relation ” is isomorphic to” is an equivalence relation on the class of all graphs.

Indeed:

• Let G = (V,E) be a graph, we have idV is an isomorphism from G onto G.

• Let G and G′ be two graphs, if f is an isomorphism from G onto G′, the inverse mapping
f−1 is an isomorphism from G′ onto G.

• The composite mapping, f2 ◦ f1, of two isomorphisms is an isomorphism.

2. Given an isomorphism f from G = (V,E) onto G′ = (V ′, E ′), then:

• ∀x ∈ V , f(NG(x)) = NG′f(x); so dG′(f(x)) = dG(x).

• |V | = |V ′|, |E| = |E ′|, and G and G′ have the same degree sequence.

3. Let G(V,E) be a graph. (Aut(G), ◦) is a group (it is a subgroup of (SV , ◦) the group of
permutations of V ). The group (Aut(G) is called the automorphism group of G.

Example
Let G = ({1, 2, 3, 4, 5}, {{1, 2}, {2, 3}, {3, 4}, {4, 5}} be a graph.

1 2 543

G

The graph G is too G = ({1, 2, 3, 4, 5}, {{5, 4}, {4, 3}, {3, 2}, {2, 1}}.

5 4 123

G

f =
(
1 2 3 4 5
5 4 3 2 1

)
is an automorphism.
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3.4 Properties

Proposition 3.1
If a graph G is self-complementary, then his order n satisfies: n ≡ 0 (mod 4) or n ≡ 1 (mod 4)

(i. e n = 4p or n = 4p+ 1, where p ∈ N).

Proof.
Let G = (V,E) be a self-complementary graph, then |E| = |[V ]2 \ E|, hence 2|E| = |[V ]2| =(

n
2

)
= n(n−1)

2
, therefore |E| = n(n−1)

4
, since |E| ∈ N, hence 4 devises n(n − 1), therefore n ≡

0 (mod 4) or n ≡ 1 (mod 4).

4 Particular Graphs

4.1 Complete Graph

• A complete graph is a graph in which any two vertices (different vertices) are adjacent.

• Up to isomorphy, for each integer n ≥ 1, there is a unique complete graph of order n. It is
denoted: Kn.

Examples:

a

K1

a

b

K2

a b

d c

K4

4.2 Empty Graph

• An empty graph is a graph G = (V,E) with: E = ∅.

• Up to isomorphy, for each integer n ≥ 1, there is a unique empty graph of order n. It is
denoted: Dn.

Examples:

a

Diagram of D1

a

b

Diagram of D2

a b

d c

Diagram of D4
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4.3 Paths

A path is a graph isomorphic to the graph: Pn = ({1, ..., n}, {{i, i+ 1}; 1 ≤ i ≤ n− 1}).
Examples:

a

Diagram of P1

a b

Diagram of P2

a b c d

Diagram of P4

4.4 Cycles

1. A cycle on n ≥ 3 is a graph isomorphic to the graph:
Cn = ({1, ..., n}, {{i, i+ 1}; 1 ≤ i ≤ n− 1} ∪ {{1, n}}).

2. • The length of a path or a cycle is the number of its edges.

• k-path (resp. k-cycle) is a path (resp. cycle) of length k.

• A k-path (resp. k-cycle) is odd or even according to the parity of length k.

• A 3-cycle is often called a triangle.

Remark 4.1
The cycle Cn is obtained from the path Pn by adding the edge {1, n}.

Examples:

c

a

b

C3

a b

d c

C4

b c

a e

d

C5

4.5 Petersen graph

A Petersen graph is a graph G = (V,E), up to isomorphy, defined by:
V = P2({1, 2, 3, 4, 5}) = {{1, 2}, {1, 3}, {1, 4}, {1, 5}, {2, 3}, {2, 4}, {2, 5}, {3, 4}, {3, 5}, {4, 5}}
and for i ̸= j ∈ {1, 2, 3, 4, 5} and α ̸= β ∈ {1, 2, 3, 4, 5} where:
({{i, j}, {α, β}} ∈ E)⇔ ({i, j} ∩ {α, β} = ∅)
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Diagram of Petersen graph

{1, 4} {2, 4}

{1, 5} {2, 3}

{3, 5}{3, 4}

{1, 2}

{4, 5}

{1, 3}{2, 5}

Petersen graph

4.6 Bipartite graphs

1. • A Bipartite graph is a graph G = (V,E), such that V can be partitioned into two subsets
X and Y such that every edge has one end in X and one in Y .

• Such a partitioned {X, Y } is called a partition of the graph G; X and Y are the parts
of V , in this case G is denoted: G[X, Y ].

2. • If G[X, Y ] is a bipartite graph such that every x ∈ X is joined to every y ∈ Y , then G
is called a Complete bipartite graph.

• Up to isomorphy, we denoted Kp,q the complete bipartite graph G[X, Y ] with: |X| = p
and |Y | = q.

Examples:

1 2 3

a

K1,3

1 2 3

a

4

b

K2,4

1 2 3

a b c

K3,3
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4.7 Star graphs

A Star is a complete bipartite graph G[X, Y ] with: (|X| = 1 or |Y | = 1).
Examples:

1

2

3

a

K1,3

1

2

3

a

4

5

K5,1

4.8 Regular graphs

• A k-regular graph, where k ∈ N is a graph G = (V,E), such that: ∀x ∈ V, d(x) = k.

• A regular graph is a graph which is k-regular graph for some k.

Examples:

b c

a e

d

C5 is a 2-regular graph

d c

e b

a

5

1

2

34

A Patersen graph is 3-regular graph

In general, Cn is a 2-regular graph.

4.9 Disconnected graphs

• A disconnected graph is a graph G = (V,E), where V can be partitioned into {X, Y } such
that:(X ̸= ∅, Y ̸= ∅, ∀(x, y) ∈ X × Y : {x, y} /∈ E).

• If a graph G is not disconnected, we say that G is connected graph.
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Examples:

• Given a graph G = ({v1, v2, v3, v4, v5, v6, v7}, {v1v2, v2v3, v3v1, v2v4, v3v5, v6v7}).

• Given a graph H = ({x1, x2, x3, x4, x5, x6, x7, x8, x9},
{x1x2, x2x3, x3x4, x2x4, x2x6, x3x5, x6x7, x7x8, x8x9, x6x9}).

v5 v3

v4 v2

v1

v6

v7

G is disconnected graph

x8 x7

x9 x6 x2 x4

x3x1 x5

H is connected graph

5 Degree Sequence

5.1 Definition

Definition 5.1
We say that an increasing sequence D = (d1, ..., dn) is graphic if there is a graph G having D

as the degree sequence (i.e: D = DEG(G)).

Remarks 5.2
If an increasing sequence D = (d1, ..., dn) is graphic, then

1. dn ≤ n− 1.

2. D has an even odd terms.

3. If d1 = 0, then dn ≤ n− 2.
If dn = n− 1, then d1 ≥ 1.

4. We remark there are i ̸= j such that di = dj.

Notation 5.3

1. D = (d1, ..., dn) an increasing sequence of integers with:
0 < d1 ≤ ... ≤ dn < n, where n ≥ 2.

2. D
′′
= (d

′′
1 , ..., d

′′
n−1) the sequence obtaining, from D, as follows:

• delete dn from D and

• Subtract 1 from each of the dn last remaining terms.

3. D
′
= (d

′
1, ..., d

′
n−1) the increasing sequence consists of integers {d′′

1 , ..., d
′′
n−1} arranged in

ascending order.
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5.2 Havel-Hakimi Theorem

Problematic:
A degree sequence can be obtained from graph. But how to get graph from degree sequence?

There can be many graph from a degree sequence or there can not be any graph.
So, how to know if a degree sequence is a graphic sequence?
The solution is the Havel-Hakimi Theorem.

Theorem 5.4 Havel-Hakimi Theorem
The sequence D is graphic if and only if the sequence D

′
is graphic.

Consequence

1. This theorem reduces the study of D to the study D
′
.

2. Thus, we have an algorithmic test to check whether D is graphic and to generate a graph
whenever one exists.

We remark, this theorem is easily deduced from the following lemma.

Lemma 5.5
Let D = (d1, ..., dn) be a graphic sequence with: dn > 0 (and then n ≥ 2). Then there is a graph

G = (V,E) where, V = {x1, ..., xn}, such that:

• ∀i ∈ {1, ..., n}, dG(xi) = di, and

• NG(xn) = {xn−i; 1 ≤ i ≤ dn}

Proof.
By contradiction.

1. Consider a graph G = ({α1, ..., αn}, E) with:

(a) ∀i, dG(αi) = di

(b) The cardinality |NG(αn) ∩ {αn−i; 1 ≤ i ≤ dn}| is maximum
(for all graphs G with: DEG(G) = D).

2. So,

(a) ∃i, 1 ≤ i ≤ dn, {αn−i, αn} /∈ E

(b) ∃j, dn + 1 ≤ j ≤ n− 1, {αn−j, αn} ∈ E

(c) We may assume that: dn−j < dn−i

(d) As αn ∈ NG(αn−j)\NG(αn−i), there are β ̸= λ ∈ NG(αn−i)\NG(αn−j), (with β ̸= αn−j).

3. Thus, β, αn−j, αn−i and αn are 4 distinct vertices of G, with: {β, αn−i} ∈ E(G) and
{αn−j, αn} ∈ E(G); and {β, αn} is an edge or not.

4. We consider the graph G′ such that, β, αn−j, αn−i and αn are 4 distinct vertices verifies
of G′, with {β, αn−j} ∈ E(G′) and {αn−i, αn} ∈ E(G′), the other edges are the same on G,
hence, DEG(G) = DEG(G′) = D, is a contradiction by the cardinality
|NG(αn) ∩ {αn−i; 1 ≤ i ≤ dn}| is maximum.
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αn−j

αn

αn−i

β

G[{β, αn−j, αn−i, αn}]

αn−j

αn

αn−i

β

G′[{β, αn−j, αn−i, αn}]

Algorithm of Havel-Hakimi

1. Step 1
Sort the sequence in increasing sequence D = (d1, ..., dn)

2. Step 2

• Remove the term dn in a sequence D.

• Subtract 1 from each the dn last terms in the sequence (d1, ..., dn−1).

3. Step 3

• If a negative number in this new sequence, we stopped and the sequence D = (d1, ..., dn)
is not graphic.

• If all number zeros in this new sequence, we stopped and the sequence D = (d1, ..., dn)
is graphic.

• Otherwise, we arranged in ascending order this new sequence, considerD
′
= (d

′
1, ..., d

′
n−1)

the new increasing sequence obtained, and repeat from step 1.

Example 5.6
Prove that the sequence (1, 2, 3, 5, 3, 1, 2, 3) is a graphic sequence and give an example of a graph

G satisfying DEG(G) = D.

Remark 5.7 For the same degree sequence that is graphic, it is possible to find more than one
graph which are not isomorphic.

Example 5.8
Given a graph G = ({v1, v2, v3, v4, v5, v6, v7, v8}, {v1v2, v3v1, v2v4, v3v5, , v4v5, v5v7, v6v7, v7v8}),

and a graph H = ({x1, x2, x3, x4, x5, x6, x7, x8}, {x1x2, x1x3, x3x4, x2x4, x2x6, x3x5, x6x7, x7x8}).

v5 v3

v4 v2

v1

v6

v7v8

Graph G

x8 x7

x6 x2 x4

x3x1 x5

Graph H
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The two graphs G and H are not isomorphic, and they have the same degree sequence (1, 1, 2, 2, 2, 2, 3, 3).

Using the Havel-Hakimi algorithm for the same degree sequence (1, 1, 2, 2, 2, 2, 3, 3), we find the
graph K as follows:

v7 v3

v4 v2

v1

v6

v8v5

Graph K

The graphs K and G are not isomorphic, and the graphs K and H are not isomorphic.

Exercise 5.9

1. Is the increasing sequence D = (d1, ..., dn) a graphic sequence?

(a) D = (1, 2, 3, 4, 4, 5, 6, 7)

(b) D = (2, 2, 3, 3, 6, 6, 6, 6)

(c) D = (2, 2, 3, 4, 4, 6, 6, 7)

(d) D = (1, 1, 2, 4, 6, 7, 7, 8)

2. In the case, where D is graphic, give an example of graph G satisfying DEG(G) = D.
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6 Exercises of Graphs

Exercise 6.1

1. If you pick five cards from a standard deck of 52 cards, then at least two will be of the same
suit.

2. If you pick five numbers from the integers 1 to 8, then two of them must add up to nine.

3. In any group with two or more people, there must be at least two people who have the same
number of friends.
(Assume that “friend” is symmetric-if x is a friend of y, then y is a friend of x.)

4. In a group of six people, there will always be three people that are mutual friends or mutual
strangers.
(Assume that “friend” is symmetric-if x is a friend of y, then y is a friend of x.)

Exercise 6.2

1. Let G be a graph of order 9 such that each vertex has degree 5 or 6. Prove that at least five
vertices have degree 6 or at least six vertices have degree 5.

2. Find the values of n such that path Pn (resp. cycle Cn) is self complementary.

3. Find a self complementary graph of order 4n (resp. 4n+ 1) for each (n ≥ 1).

4. (a) Show that every graph G has a path of length δ(G).

(b) Show that if a graph G is connected and nontrivial graph, then the graph G is a complete
graph or G has a path of length δ(G) + 1.

5. Prove that the 4-cube Q4 is 4-regular, connected, and bipartite.

Exercise 6.3

1. Let G[X, Y ] be a bipartite graph, where |X| = r ≥ 1 and |Y | = s ≥ 1, of order n and size m.

(a) Show that: m ≤ rs.

(b) Deduce that: m ≤ n2

4
.

(c) Describe the bipartite graphs G for which equality holds in question (b).

2. Let G[X, Y ] be a bipartite graph.

(a) Show that:
∑
v∈X

d(v) =
∑
v∈Y

d(v).

(b) Deduce that if G is k-regular with k ≥ 1, then |X| = |Y |.

3. Find a k-regular graph of order 8 for k ∈ {4, 5}.

4. Consider two integers k and n with k ≥ 0, n ≥ 1. Prove the equivalence between the following
two assertions.
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(a) There exists a k-regular graphs of order n.

(b) The integer kn is even and k ≤ n− 1.

5. We define the graph is even if all its vertices are even.
Prove that the number of even graph on {1, 2, ..., n + 1} equals the number of graphs on
{1, ..., n}.

Exercise 6.4

1. Show that: a graph is bipartite if and only if it contains no odd cycle.

2. Let G = (V,E) be a graph.

(a) Show that if δ(G) ≥ 2, then G contains a cycle.

(b) Show that if G is a simple graph and δ(G) ≥ 2, then G contains a cycle of length at
least δ(G) + 1.

Exercise 6.5

1. (a) Is the increasing sequence D = (d1, ..., dn) a graphic sequence?

i. D = (1, 2, 3, 4, 4, 5, 6, 7)

ii. D = (2, 2, 3, 3, 6, 6, 6, 6)

iii. D = (2, 2, 3, 4, 4, 6, 6, 7)

iv. D = (1, 1, 2, 4, 6, 7, 7, 8)

(b) In the case, where D is graphic, give an example of graph G satisfying DEG(G) = D.

2. Consider the two sequences: D1 = (1, 1, 3, 3, 3, 3, 5, 6, 8, 9)
and D2 = (3, 3, 3, 3, 3, 5, 6, 6, 6, 6, 6, 6, 6, 6)

(a) Show that: D1 is not graphic.

(b) Show that: D2 is graphic and give a graph G with DEG(G) = D2.

(c) Show that there is no bipartite graph G such that DEG(G) = D2.

Exercise 6.6

1. If n+ 1 numbers are selected from the set {1, 2, ..., 2n}, then one will divide another evenly.

2. Given a sequence a1, a2, ..., an2+1 of any n2+1 different numbers, there is either an increasing
subsequence of (n+ 1) terms or else a decreasing subsequence of (n+ 1) terms.

Exercise 6.7

1. In any group of 6 people there are either three mutual friends or else three mutual strangers.

2. In any set of 10 people there is either a set of three mutual strangers or four mutual friends.

3. In any set of 10 people there is either a set of three mutual friends or a four mutual strangers.

4. In any set of 20 people there is either a set of four mutual friends or a four mutual strangers.
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Exercise 6.8
Let G = (V,E) be a graph, with |V | = 2n, without triangles (i.e. there is no subset X = {a, b, c}

of V such that: {a, b}, {b, c}, {c, a} ∈ E).

1. (a) Find the value of |E| when G is n-regular.

(b) Find an example where G is n-regular.

2. Assume that G is not n-regular.

(a) Show that: (∀x ∈ V, d(x) ≤ n)⇒ (|E| < n2).

(b) Show that: |E| < n2.

Exercise 6.9
Find all graph self complementary, up to isomorphy, of order 5 or less.

Exercise 6.10
We know that a graph with n ≥ 2 vertices has at least one pair of vertices of equal degrees. Find

all graphs with exactly one pair of vertices with equal degrees. What are their degree sequences?
(Hint: Begin with n ∈ {2, 3, 4}. Use a recursive construction. Can degree 0 or n − 1 occur

twice?)
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