Introduction to Real Analysis Continuity

Ibraheem Alolyan

King Saud University

Ibraheem Alolyan Real Analysis

Table of Contents

2 Combination of Continuous Functions

Continuous Functions

Definition

If $f: D \longrightarrow \mathbb{R}$ and $c \in D$, then f f is continuous at c if

$$\begin{aligned} \forall \varepsilon > 0 \ \exists \ \delta > 0 : \quad x \in D, \\ |x - c| < \delta \qquad \Rightarrow |f(x) - f(c)| < \varepsilon \end{aligned}$$

Image: A mathematical states and a mathem

э

Continuous Functions

Theorem

A function $f:D\longrightarrow \mathbb{R}$ is continuous at $c\in D$ iff for every sequence (x_n) in D such that $x_n\longrightarrow c$ then $(f(x_n))$ converges to f(c).

Continuous Functions

Examples

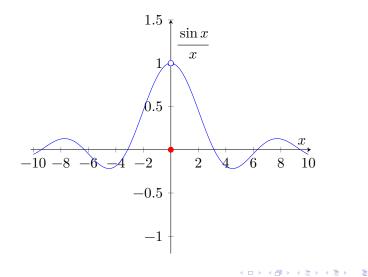
- Polynomials are continuous.
- $\ensuremath{ @ \ensuremath{ & \ensuremath{ @ \ensuremath{ & \en$

$$f(x) = \begin{cases} \frac{\sin x}{x} & x \neq 0\\ 0 & x = 0 \end{cases}$$

Image: A mathematical states and a mathem

э

Continuous Functions

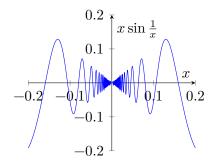


Continuous Functions

Examples

If f

$$f(x) = \begin{cases} x \sin \frac{1}{x} & x \neq 0 \\ 0 & x = 0 \end{cases}$$



æ

-≣->

(日)

Combination of Continuous Functions

Theorem

If $f, g: D \longrightarrow \mathbb{R}$ are continuous at $c \in D$ then f + g and fg are continuous at cand f/g is continuous at c if $g(c) \neq 0$.

Continuous Functions

Examples

•
$$f(x) = \frac{x^2 - 4}{x - 2}$$
•
$$f(x) = \frac{x + 4}{x^4 + 2}$$
•
$$\sin x, \cos x$$
•
$$\tan x = \frac{\sin x}{\cos x}$$
•
$$\cot x = \frac{\cos x}{\sin x}$$

æ

Image: A matrix and a matrix

Composite Function

Theorem

Let $f: D \longrightarrow \mathbb{R}$, $g: E \longrightarrow \mathbb{R}$ and $f(D) \subset E$. If f is continuous at $c \in D$ and g is continuous at f(c) then the composite function $g \circ f: D \longrightarrow \mathbb{R}$ is continuous at c.

Continuous Functions

Examples

If f : D → R is continuous, then |f| is continuous on D.
If f : D → [0,∞) is continuous, then √f is continuous on D.

イロト イポト イヨト イヨト

э

Continuity on an Interval

Definition

A function $f:D\longrightarrow \mathbb{R}$ is bounded if there is M>0 such that

 $|f(x)| \le M \qquad \forall x \in D$

• • • • • • • •

3)) B

Bounded Functions

Theorem

If $f:[a,b] \longrightarrow \mathbb{R}$ is continuous then it is bounded.

Ibraheem Alolyan Real Analysis

æ

《口》《聞》《臣》《臣》

Maximum and Minimum

Definition

The function $f:D\longrightarrow \mathbb{R}$ is said to have a minimum on D if there is $x_1\in D$ such that

$$f(x_1) \leq f(x) \quad \forall x \in D$$

and a maximum on D if there is $x_2 \in D$ such that

 $f(x) \leq f(x_2) \quad \forall x \in D$

Continuity on an Interval

Examples

 $f(x) = x^2$ $f: (0,1) \longrightarrow \mathbb{R}$ $f(x) = x^2$ $f(x) = \begin{cases} 1/x & x \neq 0\\ 2 & x = 0 \end{cases}$

< ロ > < 同 > < 三 > < 三 > 、

э

Continuity on an Interval

Theorem

If I is a closed and bounded set and $f:I\longrightarrow \mathbb{R}$ is continuous then f has a maximum and a minimum on I.

Image: A mathematical states and a mathem

Intermediate Value Theorem

Theorem

Let $f:[a,b] \longrightarrow \mathbb{R}$ be continuous. If λ is a real number between f(a) and f(b) then there is $c \in (a,b)$ such that $f(c) = \lambda$.

Continuity on an Interval

Corollary

If $f:[a,b] \longrightarrow \mathbb{R}$ is continuous and f(a), f(b) have opposite signs then there is a point $c \in (a,b)$ such that f(c) = 0.

< 4 → <

Examples

Show that $x^3 - 2 = 0$ has a solution in [1, 2].

æ

イロト イヨト イヨト イヨト

Continuity on an Interval

Corollary

If I is an interval, and $f:I\longrightarrow \mathbb{R}$ is continuous then f(I) is an interval.

Image: A mathematical states and a mathem

3)) B

Continuity on an Interval

Corollary

If $f:[a,b]\longrightarrow \mathbb{R}$ is continuous then f([a,b]) is a closed and bounded interval.

Image: A mathematical states and a mathem

3)) B

Fixed Point

Examples

If $f:[0,1]\longrightarrow [0,1]$ is continuous then show that f has a fixed point $c\in [0,1]$, i.e., f(c)=c.

Image: A mathematical states and a mathem

Continuity on an Interval

Theorem

If I is an interval and $f:I\longrightarrow \mathbb{R}$ is continuous and injective then it is strictly monotonic.

Theorem

If f is a monotonic function on the interval I and f(I) is an interval then f is continuous.

Continuity on an Interval

Theorem

If I is an interval and $f:I\longrightarrow \mathbb{R}$ is continuous and injective then f^{-1} is continuous and strictly monotonic.

Image: A mathematical states and a mathem

Continuity on an Interval

Examples

Prove that $f(x) = \sqrt[n]{x}$ is continuous on $[0, \infty)$.

Image: A mathematical states and a mathem