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Definition

A power series in (x − x0) is an infinite series of the form

∞∑
n=0

an(x − x0)
n = a0 + a1(x − x0) + a2(x − x0)

2 + . . . ,

where the coefficients an are constants. We also say that the

series
∞∑
n=0

an(x − x0)
n, is centred at x0.We say that the series

(1) converges at the point x = α if the infinite series
∞∑
n=0

an(α− x0)
n converges; that is, the limit of the sequence of

partial sums (Sn(x))n∈N exists. In other words

lim
n→∞

Sn(x) =
∞∑
n=0

an(α− x0)
n = S ,

where S is the sum of the series. If lim
n→∞

Sn(x) does not exist,

the power series is said to diverge at x = α.
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Theorem

For the series (1), there is a number R (0 ≤ R ≤ ∞), called
the radius of convergence, such that (1) converges absolutely
for |x − x0| < R and diverges for |x − x0| > R . If the series
(1) converges for all x , then R = ∞, and if it converges only at
x0, then R = 0.
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We should mention that the series (1), might or might not
converge at the end points x0 − R and x0 + R of the interval
of convergence. Moreover, at the interior points of the interval
of convergence, the power series (1) converges absolutely in the

sense that
∞∑
n=0

|an(x − x0)
n| converges.
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Theorem

(Ratio Test) Suppose that an ̸= 0 for all n, if

lim
n→∞

|an+1/an| = L (0 ≤ L ≤ ∞),

then the radius of convergence of (1) is R = 1/L, with R = ∞
if L = 0 and R = 0 if L = ∞.
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Theorem

(Root test) Suppose that an ̸= 0 for all n, if

lim
n→∞

n
√
an = L (0 ≤ L ≤ ∞),

then the radius of convergence of (1) is R = 1/L, with R = ∞
if L = 0 and R = 0 if L = ∞.
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Example

Determine the convergence set of the power series

∞∑
n=0

4

n3
(x − 2)n.
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Solution.
We have

lim
n→∞

|an+1/an| = lim
n→∞

∣∣∣∣ 4

(n + 1)3
n3

4

∣∣∣∣ = 1 = L.

The radius of convergence is R = 1. Hence the series converges
absolutely for |x − 2| < 1 and diverges when |x − 2| > 1. At

the end point x = 1, the series becomes
∞∑
n=0

4
n3
(−1)n, this is an

alternating series which converges, since 4
n3

decreases and tend
to zero as n → ∞. At the other end point x = 3, the series

becomes
∞∑
n=0

4
n3

which converges as a p−series with p > 1.

Thus the series converges for x ∈ [1, 3].
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Differentiation and Integration of a Power Series

The power series (1) defines a function f (x) that is

f (x) =
∞∑
n=0

an(x − x0)
n.

The domain of such a function is the interval of convergence of
the power series. The functions f ′ and

∫
f (x)dx can be found

by term by term differentiation and integration, since f is
continuous, differentiable and locally integrable on the interval
of convergence (x0 − R, x0 + R). We have

f ′(x) =
∞∑
n=1

nan(x−x0)
n−1, f

′′
(x) =

∞∑
n=2

n (n − 1) an(x−x0)
n−2,

and hence∫
f (x) =

∞∑
n=0

an(x − x0)
n+1/(n + 1) ∀x ∈ (x0 − R, x0 + R).
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Remark 1 : If
∞∑
n=0

an(x − x0)
n = 0, for all

x ∈ (x0 − R, x0 + R), then an = 0 for all n.



Power Series
and Analytic
Functions

Mongi BLEL

Differentiation
and
Integration of
a Power Series

Shifting the
Index of
Summation

Series Solution
of Second
Order Linear
Equations

Ordinary
Points and
Singular
Points

Power Series
Solution
About an
Ordinary Point

Shifting the Index of Summation

Combining two or more summations as a single one often
requires a re-indexing, that is a shift in the index of
summation. We illustrate this fact by the following example.
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Example

Write
∞∑
n=2

nan (n − 1) xn−2 +
∞∑
n=0

anx
n+1,

as a power series whose general term involves xn.
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Solution.
It is necessary that both summation indices start with the same
number and the common power of x should be xn.
Step 1 In both series, we make the common power xn, that is,
we add 2 in any term inside the summation and substrate 2
from the index of summation in the first series, and substrate 1
from any term in the summation and add 1 in the index of
summation in the second series, we obtain

∞∑
n=2

n (n − 1) anx
n−2 +

∞∑
n=0

anx
n+1

=
∞∑
n=0

(n + 2) (n + 1) an+2x
n +

∞∑
n=1

an−1x
n.
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Step 2. We let the index of summation starts by 1 in both
series on the right-hand side of (24), that is we have

∞∑
n=0

(n + 2) (n + 1) an+2x
n +

∞∑
n=1

an−1x
n

= 2a2 +
∞∑
n=1

[an+2(n + 2) (n + 1) + an−1]x
n.
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Series Solution of Second Order Linear Equations

In this section, we present an effective method for solving many
second order linear differential equations with variable
coefficients by means of infinite series. We shall refer to this as
the method of power series solutions. Second order linear
differential equations appear frequently in applied mathematics,
especially in the process of solving some of the classical partial
differential equations in mathematical physics. The following
are some of the most important second order linear differential
equations with variable coefficients which occur in applications.
It is common to refer to these equations by the name that
appears to the left of the differential equation
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y ′′ − xy = 0, Airy’s equation,

x2y ′′ + xy ′ + (x2 − ν2)y = 0, Bessel’s equation of order ν,

(1− x2)y ′′ − xy ′ + ν2y = 0, Chebychev’s equation,

y ′′ − 2xy ′ + 2νy = 0, Hermite’s equation,

xy ′′ + (1− x)y ′ + νy = 0, Laguerre’s equation,

(1− x2)y ′′ − 2xy ′ + n(n + 1)y = 0, Legendre’s equation.

All these equations can be solved by the method of power
series.
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Ordinary Points and Singular Points

We consider a second order homogeneous linear differential
equation with variable coefficients of the form

a2(x)y
′′ + a1(x)y

′ + a0(x)y = 0.
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Definition

A point x0 is called an ordinary point of the differential
equation (1) if the two functions a1(x)/a2(x) and a0(x)/a2(x)
are analytic at x0, that means that there exist two positive real
constants R1,R2 such that

a1(x)/a2(x) =
∞∑
n=0

An(x − x0)
n, for |x − x0| < R1,

a0(x)/a2(x) =
∞∑
n=0

Bn(x − x0)
n, for |x − x0| < R2.

If at least one of the functions a1(x)/a2(x), and a0(x)/a2(x) is
not analytic at x0, then x0 is called a singular point of the
differential equation (1).
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In most differential equations of the form (1) that occur in
applications, the coefficients a0(x), a1(x),and a2(x) are
polynomials. After canceling common factors, the rational
functions a1(x)/a2(x), and a0(x)/a2(x) are analytic at every
point except where the denominator vanishes. The points at
which the denominator vanishes are singular points of the
differential equation, and all other real numbers are ordinary
points.
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Definition

A point x0 is called a regular singular point of the differential
equation (1) if it is a singular and the two functions
(x − x0)a1(x)/a2(x), and (x − x0)

2a0(x)/a2(x) are analytic at
the point x0.
If at least one of the preceding functions is not analytic at x0,
then x0 is called an irregular singular point of the differential
equation (1).
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Example

Locate the ordinary points, regular singular points, and
irregular singular points of the differential equation

(x4 − x2)y ′′ + (2x + 1)y ′ + x2(x + 1)y = 0.
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Solution.
Here a2(x) = x4 − x2, a1(x) = 2x + 1, a0(x) = x2 (x + 1) , and
so

a1(x)/a2(x) =
2x + 1

x4 − x2
=

2x + 1

x2(x − 1)(x + 1)
,

and

a0(x)/a2(x) =
x2 (x + 1)

x4 − x2
=

1

x − 1
.

It follows from Eq (24) and Eq (24) that every real number
except 0, 1 and −1 is an ordinary point for Eq (??). To see
which of the singular points 0, 1 and −1 is a regular singular
point and which is an irregular singular point for Eq (??), we
need to examine the two functions (x − x0)a1(x)/a2(x), and
(x − x0)

2a0(x)/a2(x) at the points 0, 1 and −1. At x0 = 0, we
have

(x − x0)a1(x)/a2(x) =
2x + 1

x(x − 1)(x + 1)
,

and

(x − x0)
2a0(x)/a2(x) =

x2

x − 1
.

The first function is not analytic at x0 = 0, hence we conclude
that x0 = 0 is an irregular singular point. At x0 = 1, we have

(x − x0)a1(x)/a2(x) =
2x + 1

x2(x + 1)
,

and
(x − x0)

2a0(x)/a2(x) = x − 1.

Since both of these expressions are analytic at x0 = 1, we
conclude that x0 = 1 is a regular singular point. Finally, for
x0 = −1, we have
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(x − x0)a1(x)/a2(x) =
2x + 1

x2(x − 1)
,

and

(x − x0)
2a0(x)/a2(x) =

(x + 1)2

x − 1
.

Since both of these functions are analytic at x0 = −1, we
conclude that x0 = −1 is a regular singular point for the
differential equation (9).
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Example

Locate the ordinary points, regular singular points, and
irregular singular points of the differential equation

(x − 1)2y ′′ − (x2 − x)y ′ + y = 0.



Power Series
and Analytic
Functions

Mongi BLEL

Differentiation
and
Integration of
a Power Series

Shifting the
Index of
Summation

Series Solution
of Second
Order Linear
Equations

Ordinary
Points and
Singular
Points

Power Series
Solution
About an
Ordinary Point

Solution.
Here the functions

a1(x)/a2(x) = −x(x − 1)

(x − 1)2
=

−x

x − 1
,

and

a0(x)/a2(x) =
1

(x − 1)2

are analytic at any real number except at x0 = 1, so every real
number x is an ordinary point of Eq (10), except x0 = 1 is a
singular point. We now see whether x0 = 1 is regular or
irregular. We have(x − x0)a1(x)/a2(x) = −x , and
(x − x0)

2a0(x)/a2(x) = 1. These functions are analytic at
x0 = 1, so x0 = 1 is a regular singular point.
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Exercises

In the following exercise answer true or false

1 The point x0 = −1 is a regular singular point for the
differential equation

(1− x2)y ′′ − 2xy ′ + 12y = 0.

2 The point x0 = 0 is an ordinary point for the differential
equation

xy ′′ + (1− x)y ′ + 2y = 0.

3 The point x0 = 0 is a singular point for the differential
equation

(1 + x)y ′′ − 2y ′ + 2xy = 0.
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Power Series Solution About an Ordinary Point

In this section, we show how to solve any second order
homogeneous differential equation with variable coefficients of
the form

a2(x)y
′′ + a1(x)y

′ + a0(x)y = 0,

in some interval about an ordinary point x0. The point x0 is
usually dictated by the specific problem at hand which requires
that we find the solution of the differential equation (5) that
satisfies the given initial conditions of the form

y(x0) = y0, y ′(x0) = y1.

Let us recall that if the coefficients a2(x), a1(x), and a0(x) are
polynomials in x , then a point x0 is an ordinary point of Eq
(5). In general, x0 is an ordinary point if a1(x)/a2(x) and
a0(x)/a2(x) have power series expansions of the form (7) and
(7) with radius of convergence R1 and R2 respectively. The
functions (7) and (7) are continuous on the interval
|x − x0| < R, where R = min (R1,R2) . By the existence
theorem, the initial value problem (5), (5), has a unique
solution throughout the interval |x − x0| < R. Our task here is
to compute this unique solution.
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Theorem

[Solution about an ordinary point]
If x0 is an ordinary point of the differential equation (5), then
the general solution of (5) has a power series expansion about
x0

y(x) =
∞∑
n=0

an(x − x0)
n,

with positive radius of convergence.
The coefficients an for n = 2, 3, 4, . . . of the series (11) can be
obtained in terms of a0 and a1 by direct substitution of (11) in
the differential equation (5) and equating coefficients of the
same powers. Finally if (11) is the solution of (5), (5), then
a0 = y0 and a1 = y1.
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Example

Find the general solution of the differential equation

y ′ − 2xy = 0

about the ordinary point x0 = 0.
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Solution.
It is clear that x0 = 0 is an ordinary point since there are no
finite singular points. The solution of Eq (12) is of the form

y =
∞∑
n=0

anx
n.

We have

y ′ =
∞∑
n=1

nanx
n−1,

then Eq (12) becomes
∞∑
n=1

nanx
n−1 −

∞∑
n=0

2anx
n+1 = 0.

We first make the same power of x as xn in both series in (32)
by letting k = n − 1 in the first series and k = n + 1 in the
second one, we have

∞∑
k=0

(k + 1)ak+1x
k −

∞∑
k=1

2ak−1x
k = 0.

We now let the index of summation starts by 1 in both series in
(32)), so that

a1 +
∞∑
k=1

[(k + 1)ak+1 − 2ak−1] x
k = 0.

For Eq (32) to be satisfied, it is necessary that a1 = 0 and

(k + 1)ak+1 − 2ak−1 = 0, for all k ≥ 1.

Eq (32) provides a recurrence relation and we write

ak+1 =
2ak−1

k + 1
for all k ≥ 1.

Iteration of (32) then gives for k = 1

a2 = a0,

for k = 2

a3 =
2

3
a1 = 0,

for k = 3

a4 =
2

4
a2 =

1

2
a0,

for k = 4

a5 =
2

5
a3 = 0,

and for k = 5

a6 =
2

6
a4 =

1

3!
a0,

and so on. Thus from the original assumption, we find

y =
∞∑
n=0

anx
n = a0 + a1x + a2x

2 + a3x
3 + a4x

4 + . . .

= a0

(
1 +

x2

1!
+

x4

2!
+

x6

3!
+ . . .

)
= a0

∞∑
n=0

x2n

n!
for all x ∈ R.

= a0e
x2 .
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Example

Find the general solution of the differential equation

4y ′′ + y = 0,

about the ordinary point x0 = 0.

Solution.
The functions

a1(x)/a2(x) = 0,

and
a0(x)/a2(x) = 1/4,

are analytic for all x ∈ R, then every point x0 ∈ R is an
ordinary point for the differential equation (13). The solution
of Eq (13) is of the form

y =
∞∑
n=0

anx
n.

We have

y ′ =
∞∑
n=1

nanx
n−1,

and

y ′′ =
∞∑
n=2

n(n − 1)anx
n−2.

Substituting the expressions for y ′′ and y back into Eq (13)
gives

∞∑
n=2

4n(n − 1)anx
n−2 +

∞∑
n=0

anx
n = 0.

In Eq (33), we let k = n− 2 in the first series and n = k in the
second one, we have

∞∑
k=0

4(k + 2)(k + 1)ak+2x
k +

∞∑
k=0

akx
k (1)

=
∞∑
k=0

[4(k + 2)(k + 1)ak+2 + ak ] x
k = 0.

From the identity (1), we conclude that

4(k + 2)(k + 1)ak+2 + ak = 0, for all k ⩾ 0,

or

ak+2 =
−ak

4(k + 2)(k + 1)
for all k ⩾ 0.

From iteration of this recurrence relations it follow that for
k = 0

a2 =
−a0
4.2.1

=
−a0
22.2!

,

for k = 1

a3 =
−a1
4.3.2

=
−a1
22.3!

,

for k = 2

a4 =
−a2
4.4.3

=
a0

24.4!
,

for k = 3

a5 =
−a3
4.5.4

=
a1

24.5!
,

for k = 4

a6 =
−a4
4.6.5

=
−a0
26.6!

,

and so on. The constants a0 and a1 are arbitrary. From the
original assumption (33), we have

y =
∞∑
n=0

anx
n = a0 + a1x + a2x

2 + a3x
3 + a4x

4 + . . .

= a0 + a1x − a0
22.2!

x2 − a1
22.3!

x3 +
a0

24.4!
x4 + . . .

= a0

(
1− 1

22.2!
x2 +

1

24.4!
x4 − . . .

)
+a1

(
x − 1

22.3!
x3 +

1

24.5!
x5 − . . .

)
.

That is

y = a0

∞∑
n=0

(−1)n

(2n)!
(x/2)2n + 2a1

∞∑
n=0

(−1)n

(2n + 1)!
(x/2)2n+1 .

We observe that

y = a0 cos(x/2) + 2a1 sin(x/2).

So the general solution of the differential equation (13) is given
by

y = C1 cos(x/2) + C2 sin(x/2),

where C1 = a0 and C2 = 2a1 are arbitrary constants.
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Remark 2 : The solution (33) can be obtained by using the
characteristic equation

4m2 + 1 = 0,

then

m = ±1

2
i ,

so
y = C1 cos(x/2) + C2 sin(x/2),

where C1 and C2 are arbitrary constants.
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Example

Find the general solution of the differential equation

(1− x2)y ′′ − 2xy ′ + 20y = 0,

about the ordinary point x0 = 0.

Solution.
We have

a1(x)/a2(x) =
−2x

1− x2
= −2

∞∑
n=0

x2n+1 for |x | < 1,

and

a0(x)/a2(x) =
20

1− x2
= 20

∞∑
n=0

x2n for |x | < 1.

So the solution of Eq (14) is of the form

y =
∞∑
n=0

anx
n for |x | < 1.

Now let us determine the coefficients an. Since

y ′ =
∞∑
n=1

nanx
n−1,

and

y ′′ =
∞∑
n=2

n(n − 1)anx
n−2.

Eq (14) becomes
∞∑
n=2

n(n−1)anx
n−2−

∞∑
n=2

n(n−1)anx
n−2

∞∑
n=1

nanx
n+20

∞∑
n=0

anx
n = 0.

If we let k = n − 2 in the first series of (35), and k = n in the
other three series, we obtain
∞∑
k=0

(k+2)(k+1)ak+2x
k−

∞∑
k=2

k(k−1)akx
k−2

∞∑
k=1

kakx
k+20

∞∑
k=0

akx
k = 0.

All sums in (35) should start by the same index of summation
2, therefore we have

∞∑
k=2

[(k + 2)(k + 1)ak+2 − k(k − 1)ak − 2kak + 20ak ] x
k(2)

+2a2 + 20a0 + (6a3 + 18a1)x

= 0.

From the identity (2), we conclude that a2 = −10a0,
a3 = −3a1, and

(k+2)(k+1)ak+2−[k(k − 1) + 2k − 20] ak = 0, for all k ≥ 2,

then

ak+2 =
(k + 5)(k − 4)

(k + 2)(k + 1)
ak , for all k ≥ 2.

From the iteration of the recurrence relation (35), it follows
that
for k = 2,

a4 =
35

3
a0,

for k = 3

a5 =
6

5
a1,

for k = 4
a6 = 0,

for k = 5

a7 =
2

7
a1,

for k = 6
a8 = 0,

for k = 7

a9 =
1

7
a1,

and so on. The solution of Eq (14) is then given by

y =
∞∑
n=0

anx
n = a0 + a1x + a2x

2 + a3x
3 + a4x

4 + . . .

= a0 + a1x − 10a0x
2 − 3a1x

3 +
35

3
a0x

4 +
6

5
a1x

5

+
2

7
a1x

7 +
1

7
a1x

9 + . . . ,

that is

y = a0(1− 10x2 +
35

3
x4) +

+a1

(
x − 3x3 +

6

5
x5 +

2

7
x7 +

1

7
x9 . . .

)
,

for all |x | < 1.
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Example

Find the general solution of the differential equation

y ′′ − 2(x − 1)y ′ + 2y = 0,

about the ordinary point x0 = 1.
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Solution.
The two functions

a1(x)/a2(x) = −2(x − 1),

and
a0(x)/a2(x) = 2,

are analytic for all x ∈ R, so the solution of Eq (15) can have
the form

y =
∞∑
n=0

an(x − 1)n,

for all x ∈ R. To determine the coefficients an, we have

y ′ =
∞∑
n=1

nan(x − 1)n−1,

and

y ′′ =
∞∑
n=2

n(n − 1)an(x − 1)n−2,

so that Eq (15) becomes
∞∑
n=2

n(n−1)an(x−1)n−2−
∞∑
n=1

2nan(x−1)n+
∞∑
n=0

2an(x−1)n = 0.

By letting k = n − 2 in the first series, k = n in the second
series and k = n in the last one, we obtain
∞∑
k=0

(k+2)(k+1)ak+2(x−1)k−
∞∑
k=1

2kak(x−1)k+
∞∑
k=0

2ak(x−1)k = 0.

Making the same index of summation, it follows that
∞∑
k=1

[(k + 2)(k + 1)ak+2 − 2kak + 2ak ] (x−1)k +2a2+2a0 = 0.

From the identity (37), we conclude that a2 = −a0 and

ak+2 =
2(k − 1)

(k + 2)(k + 1)
ak , for all k ≥ 1.

From the iteration of the recurrence relation (37), it follows
that
for k = 1,

a3 = 0,

for k = 2,

a4 =
−1

6
a0,

for k = 3,
a5 = 0,

for k = 4,

a6 =
−1

30
a0,

for k = 5,
a7 = 0,

for k = 6,

a8 =
−1

168
a0,

and so on. Hence the solution of the differential equation (15)
is given by

y =
∞∑
n=0

an(x − 1)n = a0 + a1(x − 1) + a2(x − 1)2 + a3(x − 1)3 + . . .

= a0 + a1(x − 1)− a0(x − 1)2 − 1

6
a0(x − 1)4 − 1

30
a0(x − 1)6 − . . .

That is

y = a0

[
1− (x − 1)2 − 1

6
(x − 1)4 − 1

30
(x − 1)6 − . . .

]
+a1(x − 1),

for all x ∈ R, and a0, a1 are two arbitrary constants and the
two solutions

y1 = 1− (x − 1)2 − 1

6
(x − 1)4 − 1

30
(x − 1)6 − . . .

and
y2 = x − 1,

are linearly independent on R.
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Example

Solve the initial value problem by the method of power series
about the initial point x0 = 0.{

(1− x2)y ′′ − xy ′ + 4y = 0,
y(0) = 1, y ′(0) = 0.
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Solution.
The two functions

a1(x)/a2(x) =
−x

1− x2
= −

∞∑
n=0

x2n+1 for |x | < 1,

and

a0(x)/a2(x) =
4

1− x2
= 4

∞∑
n=0

x2n for |x | < 1,

are analytic for all |x | < 1, then the solution of the differential
equation in (16) is given by

y =
∞∑
n=0

anx
n for |x | < 1.

Hence

y ′ =
∞∑
n=1

nanx
n−1,

and

y ′′ =
∞∑
n=2

n(n − 1)anx
n−2,

for all |x | < 1. So we have
∞∑
n=2

n(n−1)anx
n−2−

∞∑
n=2

n(n−1)anx
n−

∞∑
n=1

nanx
n+4

∞∑
n=0

anx
n = 0.

Let k = n − 2 in the first series and k = n in the other series,
we get
∞∑
n=0

(k+2)(k+1)ak+2x
k−

∞∑
k=2

k(k−1)akx
k−

∞∑
k=1

kakx
k+4

∞∑
k=0

akx
k = 0.

All sums in (32) should start by the same index of summation
2.Therefore

∞∑
n=2

[
(k + 2)(k + 1)ak+2 − (k2 − 4)ak

]
xk

+2a2 + 4a0 + (6a3 + 3a1)x = 0.

From this last identity, we conclude that

2a2 + 4a0 = 0, 6a3 + 3a1 = 0,

and

ak+2 =
(k2 − 4)ak

(k + 2)(k + 1)
, for all k ≥ 2.

By using the initial conditions, we have a0 = 1 and a1 = 0,
then a2 = −2, a3 = 0 and

ak+2 =
k − 2

k + 1
ak , for all k ≥ 2.

So for k = 2,
a4 = 0,

for k = 3,
a5 = 0,

for k = 4,
a6 = 0,

for k = 5,
a7 = 0,

for k = 6,
a8 = 0, and so on,. . .

Then the initial value problem (16) has a unique solution given
by

y =
∞∑
n=0

anx
n = a0 + a1x + a2x

2 + a3x
3 + a4x

4 + . . .

= 1− 2x2.

for all |x | < 1.
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Example

Compute the first four coefficients of the power series solution
about the given initial point{

xy ′′ − 2(x + 1)y ′ + 2y = 0,
y(3) = 2, y ′(3) = 0.
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Solution.
We have

a1(x)/a2(x) =
−2(x + 1)

x
=

−2(x − 3 + 4)

x − 3 + 3
= −2

3

(x − 3) + 4(
1 + x−3

3

)
= −2

3
((x − 3) + 4)

∞∑
n=0

(−1)n(x − 3)n

3n

= − 2
∞∑
n=0

(−1)n(x − 3)n+1

3n+1
− 8

∞∑
n=0

(−1)n(x − 3)n

3n+1
, for all |x − 3| < 3,

and

a0(x)/a2(x) =
2

x
=

2

3(1 + x−3
3 )

=
2

3

∞∑
n=0

(−1)n(x − 3)n

3n
for all |x − 3| < 3.

Then a0(x)/a2(x), and a1(x)/a2(x) are analytic for all
|x − 3| < 3. Hence the solution of the differential equation in
(17) has the form

y =
∞∑
n=0

an(x − 3)n, for all |x − 3| < 3.

We have

y ′ =
∞∑
n=1

nan(x − 3)n−1,

and

y ′′ =
∞∑
n=2

n(n − 1)an(x − 3)n−2.

Substitution of y , y ′ and y ′′ leads to

xy ′′ − 2(x + 1)y ′ + 2y = (x − 3 + 3)y ′′ − 2(x − 3 + 4)y ′ + 2y

= (x − 3 + 3)
∞∑
n=2

n(n − 1)an(x − 3)n−2

−2(x − 3 + 4)
∞∑
n=1

nan(x − 3)n−1 + 2
∞∑
n=0

an(x − 3)n

= 0.

Thus
∞∑
n=2

n(n − 1)an(x − 3)n−1 +
∞∑
n=2

3n(n − 1)an(x − 3)n−2 −
∞∑
n=1

2nan(x − 3)n

−
∞∑
n=1

8nan(x − 3)n−1 + 2
∞∑
n=0

an(x − 3)n

= 0. (3)

Let k = n − 1, k = n − 2, k = n, k = n − 1 and k = n in the
first, second, third, fourth, and fifth series (respectively), then
we get

∞∑
k=1

k(k + 1)ak+1(x − 3)k +
∞∑
k=0

3(k + 1)(k + 2)ak+2(x − 3)k −
∞∑
k=1

2kak(x − 3)k

−
∞∑
k=0

8(k + 1)ak+1(x − 3)k +
∞∑
k=0

2ak(x − 3)k = 0.

All sums in (34) should start by the same index of summation
1, therefore we have

∞∑
k=1

{k(k + 1)ak+1 + 3(k + 1)(k + 2)ak+2 − 2kak − 8(k + 1)ak+1

+2ak} (x − 3)k + (6a2 − 8a1 + 2a0)

= 0. (4)

From identity (4), we conclude that

6a2 − 8a1 + 2a0 = 0,

and

k(k+1)ak+1+3(k+1)(k+2)ak+2−3kak−8(k+1)ak+1+2ak = 0, for all k ≥ 1.

That is
3a2 = 4a1 − a0,

and

ak+2 =
(k + 1)(8− k)ak+1 + 2(k − 1)ak

3(k + 1)(k + 2)
, for all k ≥ 1.

From the initial conditions we deduce that a0 = 2 and a1 = 0,
hence a2 = −2

3 .
For k = 1,

a3 = −14

27
,

for k = 2,

a4 = − 8

27
, and so on. . .

Then the unique solution of the (IVP) (33) is given by

y =
∞∑
n=0

an(x − 3)n

= a0 + a1(x − 3) + a2(x − 3)2 + a3(x − 3)3 + a4(x − 3)4 + . . .

= 2− 2

3
(x − 3)2 − 14

27
(x − 3)3 − 8

27
(x − 3)4 − . . .

for all x ∈ (0, 9).
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Example

Use power series method to solve the non-homogeneous
differential equation

y ′′ − xy = 2 + 3x − 4x2,

about the ordinary point x0 = 0.
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Solution.
It is clear that x0 = 0 is an ordinary point of the differential
equation

y ′′ − xy = 0,

so the solution of (18) is of the form

y =
∞∑
n=0

anx
n,

for all x ∈ R. The differential equation then becomes
∞∑
n=2

n(n − 1)anx
n−2 −

∞∑
n=0

anx
n+1 = 2 + 3x − 4x2.

If we let k = n− 2 in the first sum and k = n+ 1 in the second
sum in (37), then we obtain

∞∑
k=0

(k + 1)(k + 2)ak+2x
k −

∞∑
k=1

ak−1x
k = 2 + 3x − 4x2.

In order to make comparison between coefficients, we write
(38) in the form

2a2 + (6a3 − a0)x + (12a4 − a1)x
2 +

∞∑
k=3

[(k + 1)(k + 2)ak+2 − ak−1] x
k

= 2 + 3x − 4x2.

Hence

a2 = 1, 6a3 − a0 − 3 = 0, 12a4 − a1 + 4 = 0,

and
ak+2 =

ak−1

(k + 1)(k + 2)
, for all k ≥ 3.

Then

a2 = 1, a3 =
a0
6

+
1

2
, a4 =

a1
12

− 1

3
.

For

k = 3, a5 =
a2
4.5

=
1

20
,

for

k = 4, a6 =
a3
5.6

=
1

30
(
a0
6

+
1

2
) =

a0
180

+
1

60
,

for

k = 5, a7 =
a1
504

− 1

126
, and so on. . .

Thus we have

y =
∞∑
n=0

anx
n = a0 + a1x + a2x

2 + a3x
3 + a4x

4 + . . .

= a0 + a1x + x2 + (
a0
6

+
1

2
)x3 + (

a1
12

− 1

3
)x4 +

1

20
x5 + (

a0
180

+
1

60
)x6

+(
a1
504

− 1

126
)x7 + . . .

That is

y = a0

[
1 +

1

6
x3 +

1

180
x6 + . . .

]
+ a1

[
x +

1

12
x4 +

1

504
x7 + . . .

]
+x2 +

1

2
x3 − 1

3
x4 +

1

20
x5 +

1

60
x6 − 1

126
x7 + . . .

So
y = a0y1 + a1y2 + yp,

represents the general solution of the differential equation (18),
where

y1 = 1 +
1

6
x3 +

1

180
x6 + . . .

and

y2 = x +
1

12
x4 +

1

504
x7 + . . .

are two linearly independent solutions on R of the
homogeneous differential equation y ′′ − xy = 0, and

yp = x2 +
1

2
x3 − 1

3
x4 +

1

20
x5 +

1

60
x6 − 1

126
x7 + . . . ,

is a particular solution of the nonhomogeneous differential
equation (18).
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Example

Use power series method to solve the non-homogeneous
differential equation

y ′′ − 4xy ′ − 4y = ex ,

about the ordinary point x0 = 0.
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Solution.
The solution of the differential equation (19) is of the form

y =
∞∑
n=0

anx
n,

for all x ∈ R. Since

y ′ =
∞∑
n=1

nanx
n−1,

and

y ′′ =
∞∑
n=2

n(n − 1)anx
n−2.

The differential equation (19) takes the form
∞∑
n=2

n(n − 1)anx
n−2 − 4

∞∑
n=1

nanx
n − 4

∞∑
n=0

anx
n = ex .

Let k = n − 2 in the first series and k = n in the second and
the third series respectively, we get
∞∑
k=0

(k + 1)(k + 2)ak+2x
k − 4

∞∑
k=1

kakx
k − 4

∞∑
k=0

akx
k =

∞∑
k=0

xk

k!
.

It follows from Eq (45) that

(2a2−4a0−1)+
∞∑
k=1

[
(k + 1)(k + 2)ak+2 − 4kak − 4ak −

1

k!

]
xk = 0.

From this last identity, we conclude that

a2 = 2a0 +
1

2
,

and

ak+2 =
4

k + 2
ak +

1

(k + 2)!
, for all k ≥ 1,

for k = 1,

a3 =
4

3
a1 +

1

3!
,

for k = 2,

a4 = a2 +
1

4!
= 2a0 +

13

4!
,

for k = 3,

a5 =
4

5
a3 +

1

5!
=

16

15
a1 +

17

5!
,

for k = 4,

a6 =
4

6
a4 +

1

6!
=

4

3
a0 +

261

6!
, and so on . . .

The general solution of the differential equation (19) is then
given by

y =
∞∑
n=0

anx
n = a0 + a1x + a2x

2 + a3x
3 + a4x

4 + . . .

= a0

[
1 + 2x2 + 2x4 +

4

3
x6 . . .

]
+ a1

[
x +

4

3
x3 +

16

15
x5 + . . .

]
+

+
1

2
x2 +

1

3!
x3 +

13

4!
x4 +

17

5!
x5 +

261

6!
x6 + . . .

= a0y1 + a1y2 + yp,

where

y1(x) = 1 + 2x2 + 2x4 +
4

3
x6 . . .

y2(x) = x +
4

3
x3 +

16

15
x5 + . . . ,

and

yp(x) =
1

2
x2 +

1

3!
x3 +

13

4!
x4 +

17

5!
x5 +

261

6!
x6 + . . .

for all x ∈ R. In this last formula y1 and y2 are two linearly
independent solutions on R of the homogeneous differential
equation

y ′′ − 4xy ′ − 4y = 0,

given by

y1 = 1 + 2x2 + 2x4 +
4

3
x6 . . .

y2 = x +
4

3
x3 +

16

15
x5 + . . .

and yp is a particular solution of the given non-homogeneous
and is given by

yp =
1

2
x2 +

1

3!
x3 +

13

4!
x4 +

17

5!
x5 . . .
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Exercises

In exercises 1 through 9, locate the ordinary points, regular
singular points, and irregular singular points of the given
differential equation

1 xy ′′ − (2x + 1)y ′ + y = 0.
2 (1− x)y ′′ − y ′ + xy = 0.
3 x3(1− x2)y ′′ + (2x − 3)y ′ + xy = 0.
4 (1− x)4y ′′ − xy = 0.
5 2x2y ′′ + (x − x2)y ′ − y = 0.
6 x2(x2 − 9)y ′′ − (x2 − 9)y ′ + xy = 0.
7 (x4 − 16)y ′′ + 2y = 0.
8 x(x2 + 1)3y ′′ + y ′ − 8xy = 0.
9 (x3 − 8)3y ′′ − 2xy ′ + y = 0.

In exercises 10 through 13, verify that all singular points of
the differential equation are regular singular points

10 x2y ′′ + xy ′ + (x2 − ν2)y = 0. (Bessel equation)
11 (1− x2)y ′′ − xy ′ + ν2y = 0. (Chebyshev equation)
12 xy ′′+ (1− x)y ′ + νy = 0. (Laguerre equation)
13 (1− x2)y ′′−2xy ′+n(n+1)y = 0. (Legendre equation)

For the following equations, specify an interval around
x0 = 0 for which a power series solution converges

14 y ′′ − xy ′ + 6y = 0.
15 (x2 − 4)y ′′ − 2xy ′ + 9y = 0.

In exercises 16 through 22, solve the initial value problems
by using the method of power series about the given initial
point x0

16

{
(1− x2)y ′′ − 2xy ′ + 6y = 0,

y(0) = 1, y ′(0) = 0.

17

{
y ′′ − 2(x + 2)y ′ + 4y = 0,
y(−2) = 1, y ′(−2) = 0.

18

{
(−x2 + 4x − 3)y ′′ − 2(x − 2)y ′ + 6y = 0,

y(2) = 1, y ′(2) = 0.

19

{
(1− x2)y ′′ − 2xy ′ + 2y = 0,

y(0) = 0, y ′(0) = −1.

20

{
y ′′ − 2(x − 1)y ′ + 2y = 0,

y(1) = 0, y ′(1) = 1.

21

{
(x2 + 4x + 3)y ′′ − 2(x + 2)y ′ − 2y = 0,

y(−2) = 0, y ′(−2) = −1.

22

{
y ′′ + (x − 1)2y ′ − 4(x − 1)y = 0,

y(1) = 1, y ′(1) = −1.
In exercises 23 through 27, compute the first four
coefficients of power series solution about the given initial
point

23

{
y ′′ − xy = 0,

y(0) = 0, y ′(0) = 1.

24

{
(x2 + 2)y ′′ − 3y ′ + (x − 1)y = 0,

y(1) = −20, y ′(1) = −2.

25

{
(x − 1)y ′′ − xy ′ + y = 0,
y(0) = 0, y ′(0) = 1.

26

{
y ′′ − 2(x − 1)y ′ + 2y = 0,

y(1) = 1, y ′(1) = 0.

27

{
x2y ′′ + xy ′ + 2y = 0,
y(1) = 1, y ′(1) = 0.

28 Derive the Taylor series for the function cos x by solving
the initial value problem{

y ′′ + y = 0,
y(0) = 1, y ′(0) = 0.

.

Solve the following equations in power series
29 (3− x2)y ′′ − 4xy ′ − 7y = 0.
30 (1− x2)y ′′ − 3xy ′ + y = 0.
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