Nonhomogeneous Linear D.Es

Recall that a general $n^{t h}$ order L.D.E. is on the form

$$
\begin{equation*}
a_{n}(x) \frac{d^{n} y}{d x^{n}}+a_{n-1}(x) \frac{d^{n-1} y}{d x^{n-1}}+\ldots+a_{1}(x) \frac{d y}{d x}+a_{0}(x) y=g(x), \tag{1}
\end{equation*}
$$

where $a_{0}, a_{1}, \ldots, a_{n}, g$ are continuous functions on some interval I and $a_{n}(x) \neq 0$ for all x in I.
The general solution of Eq.(1) is on the form

$$
y=y_{c}+y_{p},
$$

where y_{c} is the general solution of the associated Hom.
D.E.

$$
a_{n}(x) \frac{d^{n} y}{d x^{n}}+a_{n-1}(x) \frac{d^{n-1} y}{d x^{n-1}}+\ldots+a_{1}(x) \frac{d y}{d x}+a_{0}(x) y=0,
$$

and y_{p} is a particular solution of Nonhom. E. Eq.(1).

Undetermined coefficients method

Consider an $n^{\text {th }}$ order L.D.E. with constant coefficients

$$
\begin{equation*}
a_{n} \frac{d^{n} y}{d x^{n}}+a_{n-1} \frac{d^{n-1} y}{d x^{n-1}}+\ldots+a_{1} \frac{d y}{d x}+a_{0} y=g(x) \tag{1}
\end{equation*}
$$

where $\quad a_{0}, a_{1}, \ldots, a_{n}$ are constants.
We learned in Section 4.2 how can we determined y_{c} which is the general solution of the Hom. L.D. E. associated with Eq.(1) using the auxiliary equation:

$$
a_{n} m^{n}+a_{n-1} m^{n-1}+\ldots+a_{1} m+a_{0}=0 .
$$

Now, if $g(x)$ is one of the following types:
a constant, a polynomial, an exponential function on the form $e^{\alpha x} \cos \beta x \sin \beta x$, or finite sums and products of these types, then y_{p} has the same form as $g(x)$, but with general unknown coefficients to be determined.

The following table demonstrates the form of y_{p} depending upon the type of $g(x)$ incase of L.D.Es with constant coefficients.

$g(x)$	Form of y_{p}
3	A
x	$A x+B$
$5 x-9$	$A x+B$
$2 x^{2}+1$	$A x^{2}+B x+C$
$x^{3}-2 x$	$A x^{3}+B x^{2}+C x+D$
$7 e^{3 x}$	$A e^{3 x}$
$x e^{5 x}$	$(A x+B) e^{5 x}$
$\left(6 x^{2}+x\right) e^{5 x}$	$\left(A x^{2}+B x+C\right) e^{5 x}$
$3 \sin x$	$A \cos x+B \sin x$
$x \cos x$	$(A x+B) \cos x+(C x+D) \sin x$

$g(x)$
$\left(x^{2}-x+3\right) \cos x$
$4 e^{x} \cos x$
$x e^{-7 x} \sin x$
$3 \sin x+4 \cos 3 x$
$4 \sin x-9 \cos x$

Form of y_{p}

$$
\left(A x^{2}+B x+C\right) \cos x+\left(D x^{2}+E x+F\right) \sin x
$$

$$
A e^{x} \cos x+B e^{x} \sin x
$$

$$
(A x+B) e^{-7 x} \cos x+(C x+D) e^{-7 x} \sin x
$$

$$
A \cos x+B \sin x+C \cos 3 x+D \sin 3 x
$$

$$
A \cos x+B \sin x
$$

Example 1. Solve the following D. equation:

$$
y^{\prime \prime}-5 y^{\prime}+6 y=12 .
$$

Solution. The associated Hom. E. is $y^{\prime \prime}-5 y^{\prime}+6 y=0$, hence the aux. eq. is

$$
m^{2}-5 m+6=0 \Rightarrow(m-3)(m-2)=0 \Rightarrow m=3,2 .
$$

Therefore $y_{c}=c_{1} e^{3 x}+c_{2} e^{2 x}$.

For y_{p} we have $g(x)=12$ hence y_{p} is on the form $y_{p}=A$, where A is a constant to be determined.

But $y=A \Rightarrow y^{\prime}=y^{\prime \prime}=0$. Using these values in Eq.(1) we get $6 A=12 \Rightarrow A=2 \Rightarrow y_{p}=2$,
hence the general solution is

$$
\begin{aligned}
y & =y_{c}+y_{p} \\
& =c_{1} e^{3 x}+c_{2} e^{2 x}+2
\end{aligned}
$$

Example 2. Solve the D. E.

$$
\begin{equation*}
y^{\prime \prime}-5 y^{\prime}+6 y=4 x \tag{1}
\end{equation*}
$$

Solution. The associated Hom. E. is $y^{\prime \prime}-5 y^{\prime}+6 y=0$, hence from Example 1 we have $y_{c}=c_{1} e^{3 x}+c_{2} e^{2 x}$.
For y_{p} we have $g(x)=4 x$, hence y_{p} is on the form $y_{p}=A x+B$, where A and B are constants to be determined. But $y_{p}=A x+B \Rightarrow y^{\prime}=A, y^{\prime \prime}=0$.
Using these values in Eq.(1) implies

$$
\begin{align*}
& -5 A+6(A x+B)=2 x \\
& \Rightarrow 6 A x+(6 B-5 A)=2 x \tag{2}
\end{align*}
$$

Comparing coefficients on both sides of Eq.(2) we get $6 A=2, \quad 6 B-5 A=0 \Rightarrow A=\frac{1}{3}, B=\frac{5}{18}$, hence $y_{p}=\frac{1}{3} x+\frac{5}{18}$, and the general solution is

$$
y=y_{c}+y_{p}=c_{1} e^{3 x}+c_{2} e^{2 x}+\frac{1}{3} x+\frac{5}{18} .
$$

Example 3. Solve $y^{\prime \prime}-3 y^{\prime}+2 y=6 e^{-x}$,
Solution. The associated Hom. E. is $y^{\prime \prime}-3 y^{\prime}+2 y=0$, hence the aux. equation and it's roots are

$$
m^{2}-3 m+2=0 \Rightarrow(m-2)(m-1)=0 \Rightarrow m=2,1,
$$

therefore $y_{c}=c_{1} e^{2 x}+c_{2} e^{x}$.
For y_{p} we have $g(x)=6 e^{-x}$, hence y_{p} is on the form $y_{p}=A e^{-x}$, where A is a constants to be determined. But $y_{p}=A e^{-x} \Rightarrow y^{\prime}=-A e^{-x}, y^{\prime \prime}=A e^{-x}$. Using these values in Eq.(1) we get $6 A=6 \Rightarrow A=1$, therefore $y_{p}=e^{-x}$, and the general solution is

$$
y=y_{c}+y_{p}=c_{1} e^{2 x}+c_{2} e^{x}+e^{-x}
$$

Example 4. Solve $y^{\prime \prime}-3 y^{\prime}+2 y=2-e^{3 x}$.
Solution. The associated Hom. E. is $y^{\prime \prime}-3 y^{\prime}+2 y=0$, hence from Example 3 we have $y_{c}=c_{1} e^{2 x}+c_{2} e^{x}$.
For y_{p} we have $g(x)=g_{1}(x)+g_{2}(x)$,where

$$
\begin{aligned}
& g_{1}(x)=2 \quad \Rightarrow y_{p_{1}}=A \\
& g_{2}(x)=-e^{-x} \Rightarrow y_{p_{2}}=B e^{-x}
\end{aligned}
$$

Hence y_{p} is on the form $y_{p}=y_{p_{1}}+y_{p_{2}}=A+B e^{-x}$, Which implies $y^{\prime}=-B e^{-x}, y^{\prime \prime}=B e^{-x}$.
Using these values in Eq.(1) we get

$$
A+6 B e^{-x}=2-e^{-x} \Rightarrow A=2, B=\frac{-1}{6} \Rightarrow y_{p}=2-\frac{1}{6} e^{-x}
$$

Therefore the general solution is $y=c_{1} e^{2 x}+c_{2} e^{x}+2-\frac{1}{6} e^{-x}$.

Example 5. Solve $y^{\prime \prime}-3 y^{\prime}+2 y=2 x-3 \sin x$.
Solution. The associated Hom. E. is $y^{\prime \prime}-3 y^{\prime}+2 y=0$, hence from Example 3 we have $y_{c}=c_{1} e^{2 x}+c_{2} e^{x}$.
For y_{p} we have $g(x)=g_{1}(x)+g_{2}(x)$, where

$$
\begin{aligned}
& g_{1}(x)=2 x \quad \Rightarrow y_{p_{1}}=A x+B \\
& g_{2}(x)=-3 \sin x \Rightarrow y_{p_{2}}=C \cos x+D \sin x
\end{aligned}
$$

Hence y_{p} is on the form

$$
y_{p}=y_{p_{1}}+y_{p_{2}}=A x+B+C \cos x+D \sin x
$$

which implies

$$
y_{p}^{\prime}=A-C \sin x+D \cos x, y_{p}^{\prime}=-C \cos x-D \sin x .
$$

Using these values in Eq.(1) we obtain
$2 A x+2 B-3 A+(C-3 D) \cos x+(D+3 C) \sin x=2 x-3 \sin x$, which implies $2 A=2,2 B-3 A=0, C-3 D=0, D+3 C=-3$, hence $A=1, B=\frac{3}{2}, C=\frac{-9}{10}, D=\frac{-3}{10}$.
Therefore $y_{p}=x+\frac{3}{2}-\frac{9}{10} \cos x-\frac{3}{10} \sin x$, and the general solution is

$$
\begin{equation*}
y_{p}=y_{c}+y_{p}=c_{1} e^{2 x}+c_{2} e^{x}+x+\frac{3}{2}-\frac{9}{10} \cos x-\frac{3}{10} \sin x . \tag{1}
\end{equation*}
$$

Example 6. $y^{\prime \prime}-3 y^{\prime}+2 y=(3 x-2) e^{-x}$.
Solution. The associated Hom. E. is $y^{\prime \prime}-3 y^{\prime}+2 y=0$, hence from Example 3 we have $y_{c}=c_{1} e^{2 x}+c_{2} e^{x}$.
For y_{p} we have $g(x)=(3 x-2) e^{-x}$, therefore y_{p} is on the form $y_{p}=(A x+B) e^{-x}$, which implies
$y^{\prime}=A e^{-x}-(A x+B) e^{-x} y^{\prime \prime}=-2 A e^{-x}+(A x+B) e^{-x}$. Using these values in Eq.(1) we get

$$
6 A x-5 A+6 B=3 x-2 \Rightarrow A=\frac{1}{2}, B=\frac{5}{12} \Rightarrow y_{p}=\frac{1}{2} x+\frac{5}{12},
$$

hence the general solution is

$$
y_{p}=y_{c}+y_{p}=c_{1} e^{2 x}+c_{2} e^{x}+\frac{1}{2} x+\frac{5}{12}
$$

Remark.

Assume that the particular solution of a nonhom. L.D.E. is on the form

$$
y_{p}=y_{p_{1}}+\ldots .+y_{p_{k}} .
$$

If there is a term in $y_{p_{i}}$ duplicates a term in y_{c}, then this $y_{p_{i}}$ must be multiplied by x^{s}, where s is the smallest positive integer that eliminates the duplication. In fact S is the multiplicity of the root of the associated auxiliary equation which causes the duplication.

Example 7. Solve $y^{\prime \prime}-2 y^{\prime}+y=x+4 e^{x}$.
Solution. The associated Hom. E. is $y^{\prime}-2 y^{\prime}+y=0$, hence the aux. equation and it's roots are

$$
m^{2}-2 m+1=0 \Rightarrow(m-1)(m-1)=0 \Rightarrow m=1,1,
$$

therefore $y_{c}=c_{1} e^{x}+c_{2} x e^{x}$.
For y_{p} we have $g(x)=g_{1}(x)+g_{2}(x)$, where

$$
\begin{aligned}
& g_{1}(x)=2 x \Rightarrow y_{p_{1}}=A x+B \\
& g_{2}(x)=4 e^{x} \Rightarrow y_{p_{2}}=C e^{x}
\end{aligned}
$$

It is clear that the term in $y_{p_{2}}$ duplicates a term in y_{c}, thus $y_{p_{2}}$ must be multiplied by x^{2} to eliminate this duplication. Hence $y_{p}=y_{p_{1}}+x^{2} y_{p_{2}}=A x+B+C x^{2} e^{x}$,

Which implies

$$
y_{p}^{\prime}=A+2 C x e^{x}+C x^{2} e^{x}, y_{p}^{\prime \prime}=2 C e^{x}+4 C x e^{x}+C x^{2} e^{x}
$$

Using these values in Eq.(1) we get

$$
\begin{aligned}
& A x+B-2 A+2 C e^{x}=x+4 e^{x} \\
& \Rightarrow A=1, B-2 A=0,2 C=4 \Rightarrow B=2, C=2,
\end{aligned}
$$

therefore $y_{p}=x+2+2 x^{2} e^{x}$, and the he general solution is $y=c_{1} e^{2 x}+c_{2} e^{x}+x+2+2 x^{2} e^{x}$.
Example 8. Find the form of the particular solution for each of the following differential equations
(1) $y^{(5)}-y^{\prime \prime \prime}=x+2-3 e^{x}+5 x \cos x$.

Solution. The auxiliary equation is

Which implies

$$
y_{p}^{\prime}=A+2 C x e^{x}+C x^{2} e^{x}, y_{p}^{\prime \prime}=2 C e^{x}+4 C x e^{x}+C x^{2} e^{x}
$$

Using these values in Eq.(1) we get

$$
\begin{aligned}
& A x+B-2 A+2 C e^{x}=x+4 e^{x} \\
& \Rightarrow A=1, B-2 A=0,2 C=4 \Rightarrow B=2, C=2,
\end{aligned}
$$

therefore $y_{p}=x+2+2 x^{2} e^{x}$, and the he general solution is $y=c_{1} e^{2 x}+c_{2} e^{x}+x+2+2 x^{2} e^{x}$.
Example 8. Find the form of the particular solution of the following differential equation

$$
y^{(5)}-y^{\prime \prime \prime}=x+2-3 e^{x}+5 x \cos x .
$$

Solution. The auxiliary equation is

$$
m^{5}-m^{3}=0 \Rightarrow m=0,0,0,1,-1
$$

Hence $y_{c}=c_{1}+c_{2} x+c_{3} x^{2}+c_{4} e^{x}+c_{5} e^{-x}$.
Now $g(x)=g_{1}(x)+g_{2}(x)+g_{3}(x)$, where

$$
\begin{aligned}
& g_{1}(x)=7 x+2 \Rightarrow y_{p_{1}}=A x+B, \\
& g_{2}(x)=-3 e^{x} \Rightarrow y_{p_{2}}=C e^{x}, \\
& g_{3}(x)=5 x \cos x \Rightarrow y_{p_{3}}=(D x+E) \cos x+(F x+G) \sin x .
\end{aligned}
$$

It is clear that there are terms in $y_{p_{1}}$ duplicate terms in y_{c} therefore $y_{p_{1}}$ must be multiplied by x^{3} to eliminate this duplication. Also, the term in $y_{p_{2}}$ duplicate a term in y_{c}, therefore $y_{p_{2}}$ must be multiplied by x. Hence y_{p} is on the form $y_{p}=x^{3}(A x+B)+C x e^{x}+(D x+E) \cos x+(F x+G) \sin x$.

Example 8. Find the form of the particular solution of the following differential equation

$$
y^{(6)}+2 y^{(4)}+y^{\prime \prime}=x^{2}-5 e^{3 x}-\cos x+7 \sin 3 x .
$$

Solution. The auxiliary equation is

$$
m^{6}+2 m^{4}+m^{2}=0 \Rightarrow m^{2}\left(m^{2}+1\right)^{2}=0 \Rightarrow m=0,0, \pm i, \pm i,
$$

hence $y_{c}=c_{1}+c_{2} x+c_{3} \cos x+c_{4} \sin x+c_{5} x \cos x+c_{6} x \sin x$.
Now $g(x)=g_{1}(x)+g_{2}(x)+g_{3}(x)+g_{4}(x)$ where

$$
\begin{aligned}
& g_{1}(x)=x^{2} \Rightarrow y_{p_{1}}=A x^{2}+B x+C, \\
& g_{2}(x)=-5 e^{3 x} \quad \Rightarrow y_{p_{2}}=D e^{3 x}, \\
& g_{3}(x)=-\cos x \Rightarrow y_{p_{3}}=E \cos x+F \sin x, \\
& g_{4}(x)=7 \sin 3 x \Rightarrow y_{p_{3}}=G \cos 3 x+H \sin 3 x .
\end{aligned}
$$

It is clear that there are terms in $y_{p_{1}}$ duplicate terms in y_{c} therefore $y_{p_{1}}$ must be multiplied by x^{2} to eliminate this duplication. Also, there are terms in $y_{p_{3}}$ duplicate terms in y_{c}, therefore $y_{p_{3}}$ must be multiplied by x. Hence y_{p} is on the form
$y_{p}=x^{2}\left(A x^{2}+B x+C\right)+C e^{3 x}+x(E \cos x+F \sin x)+G x \cos 3 x+H x \sin x$.

