
Nonhomogeneous Linear D.Es 

Recall that a general        order L.D.E. is on the form 

 

 

where                         are continuous functions on some 

interval I  and 

The general solution of Eq.(1) is on the form 

 

where       is the general solution of the associated Hom. 

D.E.  

 

and         is a particular solution of Nonhom. E. Eq.(1). 
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Undetermined coefficients method 

Consider an        order L.D.E. with constant coefficients 

 

where                         are constants.  

We learned in Section 4.2 how can we determined           

which is the general solution of the Hom. L.D. E. 

associated  with Eq.(1) using the auxiliary equation: 

 

Now, if             is one of the following types: 

a constant, a polynomial, an exponential function on the 

form    ,                             or finite sums and products of 

these types, then       has the same form as           , but with 

general unknown coefficients to be determined. 
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The following table demonstrates the form of   

depending upon the type of            incase of  L.D.Es                   

with constant coefficients. 
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Example 1. Solve the following D. equation: 

 

Solution. The associated Hom. E. is 

hence the aux. eq. is 
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For       we have 

                 hence      is on the form             , where A 

is a constant to be determined.  

But                                     Using these values in 

Eq.(1) we get 

hence the general solution is 

 

 

Example 2. Solve the D. E. 
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Solution. The associated Hom. E. is 

hence from Example 1 we have 

For       we have                  hence      is on the form              

                      where A and B are constants to be 

determined. But                                     

 Using these values in Eq.(1) implies 

 

Comparing coefficients on both sides of Eq.(2) we 

get 

hence                      and the general solution is 
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Example 3. Solve 

Solution. The associated Hom. E. is 

hence the aux. equation and it’s roots are 

 

therefore  

For       we have                     hence      is on the form              

                      where A is a constants to be 

determined. But                                     

 Using these values in Eq.(1) we get 

therefore                ,  and the general solution is  
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Example 4. Solve  

Solution. The associated Hom. E. is 

hence from Example 3 we have  

For       we have                                   where       

 

 

Hence      is on the form  

Which implies                                     

 Using these values in Eq.(1) we get 

 

Therefore the general solution is  
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Example 5. Solve  

Solution. The associated Hom. E. is 

hence from Example 3 we have  

For       we have                                      where       

 

 

Hence      is on the form  

 

which implies                                     

  

Using these values in Eq.(1) we obtain 
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which implies 

hence  

Therefore                                                 and the 

general solution is  

 

Example 6. 

Solution. The associated Hom. E. is 

hence from Example 3 we have  

For       we have                             , therefore      

is on the form                            which implies 
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Using these values in Eq.(1) we get 

 

hence the general solution is  

 

Remark. 

Assume that the particular solution of a nonhom. L.D.E. 
is on the form 

 

If there is a term in        duplicates a term in      , then this             

        must be multiplied by        where s is the smallest 
positive integer that eliminates the duplication. In fact s 
is the multiplicity of the root of the associated auxiliary  
equation which causes the duplication. 
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Example 7. Solve 

Solution. The associated Hom. E. is 

hence the aux. equation and it’s roots are 

 

therefore  

For       we have                                   where 

  

  

It is clear that the term in        duplicates a term in 

thus        must be multiplied by      to eliminate this 

duplication. Hence  
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Which implies                                     

  

Using these values in Eq.(1) we get 

 

 

therefore                                 and the he general 

solution is  

Example 8. Find the form of the particular solution 

for each of the following differential equations 

(1)    

Solution. The auxiliary equation is  
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Which implies                                     

  

Using these values in Eq.(1) we get 

 

 

therefore                                 and the he general 

solution is  

Example 8. Find the form of the particular solution of 

the following differential equation 

 

Solution. The auxiliary equation is  
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Hence 

Now                                               where 

 

 

 

It is clear that there are terms in        duplicate terms 

in        therefore        must be multiplied by      to 

eliminate this duplication. Also, the term in        

duplicate a term in      , therefore        must be 

multiplied by    . Hence      is on the form 
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Example 8. Find the form of the particular solution of 

the following differential equation 

 

Solution. The auxiliary equation is 

  

hence 

Now                                                           where 
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It is clear that there are terms in        duplicate terms 

in        therefore        must be multiplied by      to 

eliminate this duplication. Also, there are terms in        

duplicate terms in      , therefore        must be 

multiplied by    . Hence      is on the form 
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