Homogeneous Linear D.Es with constant coefficients

A general $n^{\text {th }}$ order H.L.D.E. with constant coefficients is on the form

$$
\begin{equation*}
a_{n} \frac{d^{n} y}{d x^{n}}+a_{n-1} \frac{d^{n-1} y}{d x^{n-1}}+\ldots+a_{1} \frac{d y}{d x}+a_{0} y=0 \tag{1}
\end{equation*}
$$

where $a_{0}, a_{1}, \ldots, a_{n}$ are constants.
It is easy to see that $y=e^{m x}$ is a solution of the D.E. $a y^{\prime}+b y=0$ where m is given by $m=\frac{-b}{a}$.
Does higher order equations have solutions on this form? If yes, what are the values of m ?
Suppose $y=e^{m x}$ is a solution of the second order D.E.

$$
\begin{equation*}
a y^{\prime \prime}+b y^{\prime}+c y=0 \tag{2}
\end{equation*}
$$

Since $y=e^{m x} \Rightarrow y^{\prime}=m e^{m x}, y^{\prime \prime}=m^{2} e^{m x}$, using these values in Eq.(2) we get

$$
e^{m x}\left(a m^{2}+b m+c\right)=0
$$

$$
\Rightarrow a m^{2}+b m+c=0
$$

Therefore $y=e^{m x}$ is a solution of Eq.(2) if and only if m is a root of the algebraic equation
$a m^{2}+b m+c=0$.
Equation (3) is called the auxiliary (or the characteristic) equation of the D.E. (2).

In solving the auxiliary Eq.(3) for m we have three cases:

Case 1. The two roots are real and different, say $m=m_{1}, m=m_{2}$, then the fundamental solutions are $y_{1}=e^{m_{1} x}$ and $y_{2}=e^{m_{2} x}$, hence the general solution is given by $y=c_{1} e^{m_{1} x}+c_{2} e^{m_{2} x}$.
Example. Solve the D.E. $y^{\prime \prime}-7 y^{\prime}+12 y=0$.
Solution. The auxiliary equation is $m^{2}-7 m+12=0 \Rightarrow(m-3)(m-4)=0 \Rightarrow m=3, m=4$.
Hence the general solution is $\quad y=c_{1} e^{3 x}+c_{2} e^{4 x}$.

Case 2. The two roots are real and equal, say

 $m=\lambda, m=\lambda$, then the fundamental solutions are$y_{1}=e^{\lambda x}$ and $y_{2}=x e^{\lambda x}$, hence the general solution is given by $y=c_{1} e^{2 x}+c_{2} x e^{2 x}$.
Example. Solve the D.E. $y^{\prime \prime}-10 y^{\prime}+25 y=0$.
Solution. The auxiliary equation is $m^{2}-10 m+25=0 \Rightarrow(m-5)(m-5)=0 \Rightarrow m=5, m=5$.
Hence the general solution is $y=c_{1} e^{5 x}+c_{2} x e^{5 x}$.
Case 3. The two roots are complex conjugates, say $m_{1}=\alpha+\beta i, m_{2}=\alpha-\beta i$,

Hence we get the two solutions

$$
y_{1}=e^{\alpha+\beta i} \quad \text { and } \quad y_{2}=e^{\alpha-\beta i}
$$

and using Euler's formula the fundamental solutions may be written as
$y_{1}=e^{\alpha x} \cos (\beta x)$ and $y_{2}=e^{\alpha x} \sin (\beta x)$,
hence the general solution is
$y=e^{\alpha x}\left[c_{1} \cos (\beta x)+c_{2} \sin (\beta x)\right]$.
Example. Solve the D.E. $\quad y^{\prime \prime}+2 y^{\prime}+5 y=0$.
Solution. The auxiliary equation is

$$
m^{2}+2 m+5=0 \Rightarrow m=-1 \pm 2 i,
$$

Hence we get the two solutions

$$
y=e^{-x}\left[c_{1} \cos (2 x)+c_{2} \sin (2 x)\right] .
$$

Example. Solve the D.E. $y^{\prime \prime}{ }^{\prime}-8 y=0$.
Solution. The auxiliary equation is

$$
\begin{aligned}
m^{3}-8=0 & \Rightarrow(m-2)\left(m^{2}+2 m+4\right)=0 \\
& \Rightarrow m=2 \text { or } m^{2}+2 m+4=0, \\
& \Rightarrow m=2 \text { or } m=-1 \pm \sqrt{3} i,
\end{aligned}
$$

hence the general solution is

$$
y=c_{1} e^{2 x}+e^{-x}\left[c_{2} \cos (\sqrt{3} x)+c_{3} \sin (\sqrt{3} x)\right] .
$$

Example. Solve the D.E.

$$
y^{\prime \prime}-2 y^{\prime \prime}-4 y^{\prime}+8 y=0
$$

Solution. The auxiliary equation is

$$
\begin{aligned}
m^{3}-2 m^{2} & -4 m+8=0, \\
& \Rightarrow m^{2}(m-2)-4(m-2)=0, \\
& \Rightarrow(m-2)\left(m^{2}-4\right)=0, \\
& \Rightarrow(m-2)(m-2)(m+2)=0, \\
& \Rightarrow m=2,2,-2,
\end{aligned}
$$

hence the general solution is $y=c_{1} e^{2 x}+c_{2} x e^{2 x}+c_{3} e^{-2 x}$. Example. Solve the D.E. $y^{\prime \prime \prime}-3 y^{\prime}-2 y=0$.
Solution. The auxiliary equation is

$$
\begin{aligned}
m^{3}-3 m-2=0 & \Rightarrow(m-2)\left(m^{2}-1\right)=0, \\
& \Rightarrow(m-2)(m-1)(m+1)=0, \\
& \Rightarrow m=2,1,-1,
\end{aligned}
$$

hence the general solution is

$$
y=c_{1} e^{2 x}+c_{2} e^{x}+c_{3} e^{-x}
$$

Example. Solve the initial value problem

$$
\left\{\begin{array}{l}
y^{\prime \prime}-2 y^{\prime}-3 y=0 \\
y(0)=3, y^{\prime}(0)=1
\end{array}\right.
$$

Solution. The auxiliary equation is

$$
m^{3}-2 m-3=0 \Rightarrow(m-3)(m+1)=0,
$$

hence the general solution is $\underset{2}{\Rightarrow}=3_{2}-1, y=c_{1} e^{3 x}+c_{2} e^{-x}$.
But $y(0)=3 \Rightarrow c_{1}+c_{2}=3$, and $y^{\prime}(0)=1 \Rightarrow 3 c_{1}-c_{2}=1$,
Hence $c_{1}=1, c_{2}=2$ and the solution of the i.v.p. is

$$
y=e^{3 x}+2 e^{-x}
$$

Example. Find a H.L.D.E. with constant

 coefficients if the roots of the corresponding auxiliary equation are $m=1, m=-1, m=2-3 i$.Solution. The factors of the auxiliary equation are

$$
(m-1),(m+1),(m-2)^{2}-(3 i)^{2}=m^{2}-4 m+13
$$

hence the auxiliary equation is

$$
\begin{aligned}
& (m-1)(m+1)\left(m^{2}-4 m+13\right)=0 \\
& \text { or } m^{4}-4 m^{3}+12 m^{2}+4 m-13=0
\end{aligned}
$$

Therefore the D. E. is

$$
y^{(4)}-4 y^{\prime \prime \prime}+12 y^{\prime \prime}+4 y^{\prime}-13 y=0
$$

Example. Find a H.L.D.E. with constant coefficients which has the following set of solutions

$$
3 x,-7 e^{-2 x}, e^{x} .
$$

Solution. It follows that the roots of the auxiliary equation are $m=0, m=0, m=-2, m=1$,
hence the auxiliary equation is

$$
\begin{aligned}
& m^{2}(m+2)(m-1)=0, \\
& \text { or } m^{4}+m^{3}-2 m^{2}=0 .
\end{aligned}
$$

Therefore the D. E. is

$$
y^{(4)}+y^{\prime \prime}-2 y^{\prime \prime}=0 .
$$

Example. Find a H.L.D.E. with constant coefficients which has the following set of solutions

$$
5, e^{2 x} \cos 3 x,-\sin x
$$

Solution. It follows that the roots of the auxiliary equation are $m=0, m=2 \pm 3 i, m=i$,
hence the auxiliary equation is

$$
\begin{aligned}
& m\left[(m-2)^{2}+9\right]\left(m^{2}+1\right)=0 \\
& \Rightarrow m\left(m^{2}-4 m+13\right)\left(m^{2}+1\right) \\
& \text { or } m^{5}-4 m^{4}+14 m^{3}-4 m^{2}+13 m=0
\end{aligned}
$$

Therefore the D. E. is

$$
y^{(5)}-4 y^{(4)}+14 y^{\prime \prime \prime}-4 y^{\prime \prime}+13 y=0 .
$$

