Linear D.Es of Higher Orders

A general n^{th} order L.D.E. is on the form

$$a_{n}(x)\frac{d^{n}y}{dx^{n}} + a_{n-1}(x)\frac{d^{n-1}y}{dx^{n-1}} + \dots + a_{1}(x)\frac{dy}{dx} + a_{0}(x)y = g(x).$$
(1)

If g(x)=0, then Equation (1) is called a homogeneous L.D.E, otherwise it is a nonhomogeneous. For example: $x^3 y''-8x y'+5y=0$ is a homogeneous L. D. E., while $x^3 y''-8x y'+5y = e^{2x}-3$ is a nonhomogeneous L. D. E.

Solving equation (1) subject to the constraints: $y(x_0) = y_0, y'(x_0) = y'_0, ..., y^{(n-1)} = y_0^{(n-1)},$ (2) is an n^{th} order initial value problem. The specified values given in (2) are called initial conditions. By solving the I.V.P.

$$\begin{cases} a_n(x)\frac{d^n y}{dx^n} + a_{n-1}(x)\frac{d^{n-1} y}{dx^{n-1}} + \dots + a_1(x)\frac{dy}{dx} + a_0(x)y = g(x), \quad (1) \\ y(x_0) = y_0, y'(x_0) = y'_0, \dots, y^{(n-1)} = y_0^{(n-1)}, \quad (2) \end{cases}$$

we mean to determine a function y(x) defined on some interval I containing x_0 and satisfies the equation (1) and the conditions given in (2).

Theorem (Existence and uniqueness)

Let $a_n(x), a_{n-1}(x), ..., a_1(x), a_0(x)$ and g(x) be continuous on an interval I and $a_n(x) \neq 0$ for all x in this interval. If $x = x_0$ is any point in this interval, then a solution y(x) of the initial problem (1)-(2) exists on the interval I and it is unique.

Example

It is easy to see that the function $y = 3e^{2x} + e^{-2x} - 3x$ is a solution of the I.V.P.

y''-4y = 12x, y(0) = 4, y'(0) = 1.

Since the coefficients $a_2(x)$, $a_1(x)$, $a_0(x)$ as well as g(x) are continuous and $a_2(x) \neq 0$ on any interval containing $x_0 = 0$. Therefore, in view of the above theorem, this function is the unique solution of this problem on the interval $I = (-\infty, \infty)$. Example

Find the largest interval on which the I.V.P.

$$\begin{cases} x(x^2 - 4)y'' - \sqrt{5 - x}y' + x^3 y = \ln(x + 3), \\ y(-1) = 1, y'(-1) = 0, \end{cases}$$

has a unique solution.

Solution.

Here we have $a_2(x) = x(x^2 - 4)$ which is continuous on $(-\infty, \infty)$, $a_1(x) = -\sqrt{5-x}$ is continuous on $(-\infty, 5]$, $a_0(x) = x^3$ is continuous on $(-\infty, \infty)$, $g(x) = \ln(x+3)$ is continuous on $(-3,\infty)$, and $a_2(x) = 0$, at $x = 0, \pm 2$. Thus, the functions $a_2(x)$, $a_1(x)$, $a_0(x)$ and g(x)are all continuous on the intervalI = (-2, 0) which contains $x_0 = -1$ and $a_2(x) \neq 0$, on *I*. Hence, the IVP admits a unique solution on the interval I.

Homework

Determine the largest symmetric interval on which the following I.V.P has a unique solution

$$\begin{cases} \ln(x+2) \ y'' - \sqrt{9 - x^2} \ y' + 3y = \tan x, \\ y(0) = 1, \ y'(0) = 2, \end{cases}$$

Linear dependence

A set of functions $f_1, f_2, ..., f_n$ is said to be linearly dependent on an interval I, if there are constants

 c_1, c_2, \dots, c_n , not all, zero such that

 $c_1 f(x)_1 + c_2 f_2(x) + \dots + c_n f_n(x) = 0$ for all x in I. Example 1. The functions:

 $f_1(x) = x^2$, $f_2(x) = e^{-x}$, $f_3(x) = xe^{-x}$, and $f_4(x) = (3-5x) e^{-x}$ Are linearly dependent on $I = (-\infty, \infty)$.

Because
$$f_4(x) = (3-5x)e^{-x} = 3e^{-x} - 5xe^{-x}$$

$$= 0f_1(x) + 3f_2(x) - 5f_3(x)$$

 $0 f_1(x) + 3 f_2(x) - 5 f_3(x) - f_4(x) = 0$ For all x in *I*. Hence there are constants $c_1 = 0, c_2 = 3, c_3 = -5, and c_4 = -1$ not all zero such that $c_1 f(x)_1 + c_2 f_2(x) + c_3 f_3(x) + c_4 f_4(x) = 0$ for all x in I. Example 2. The functions: $f_1(x) = 1$, $f_2(x) = \cos(2x)$ and $f_4(x) = \sin^2(x)$ are linearly dependent on $I = (-\infty, \infty)$. Since, $2\sin^2(x) = [1 - \cos(2x)]$ hence, $1 - \cos(2x) - 2\sin^2(x) = 0$ for all x in I,

which implies $1*f_1(x)-1*f_2(x)-2*f_3(x) = 0$ for all x in I, that is, there are constants $c_1 = 1, c_2 = -1$, and $c_3 = -2$ not all zero such that $c_1 f(x)_1 + c_2 f_2(x) + c_3 f_3(x) = 0$ for all x in I.

Hence f_1 , f_2 and f_3 are linearly dependent on the interval $I = (-\infty, \infty)$.

Remark. If $f_1, f_2, ..., f_n$ are linearly dependent functions on some interval *I*, then one of them can be written as a linear combination of the other ones.

Linear independence

A set of functions $f_1, f_2, ..., f_n$ is said to be linearly independent on an interval *I*, if the equation

$$c_1 f(x)_1 + c_2 f_2(x) + \dots + c_n f_n(x) = 0$$
 for all x in I

is satisfied only when all the constants $c_1, c_2, ..., c_n$ are zero.

Example. The functions: $f_1(x) = x^2$ and $f_2(x) = x$ are linearly independent on $I = (-\infty, \infty)$. Because, if $c_1 f(x)_1 + c_2 f_2(x) = 0$ for all x in I, then, $c_1x^2 + c_2x = 0$ for all x in $(-\infty, \infty)$. In particular for x = 1 and x = -1 we get $c_1 + c_2 = 0$, and $c_1 - c_2 = 0$ hence $c_1 = c_2 = 0$. **Example 2. The functions:** $f_1(x) = x$ and $f_2(x) = |x|$ are linearly independent on [-1, 1], but they are linearly dependent on [0, 1].

Definition

Assume that the functions $f_1, f_2, ..., f_n$ possess at least n-1 derivatives on an interval *I*. Then the determinant

$$W(x, f_1, \dots, f_n) = \begin{vmatrix} f_1(x) & f_2(x) & \dots & f_n(x) \\ f_1'(x) & f_2'(x) & \dots & f_n'(x) \\ & & \dots & \\ f_1^{(n-1)}(x) & f_2^{(n-1)}(x) & \dots & f_n^{(n-1)}(x) \end{vmatrix},$$

is called the Wronskian of $f_1, f_2, ..., f_n$.

Theorem. (Criterion for linear independence) Assume that the functions $f_1, f_2, ..., f_n$ possess at least n-1 derivatives on an interval I. If $W(x, f_1, ..., f_n) \neq 0$ for at least one value x_0 in I, then f_1, f_2, \dots, f_n are linearly independent on *I*. Example. Verify that the functions $f_1(x) = x, f_2(x) = e^x, and f_3(x) = e^{-x}$ are linearly independent on $I = (-\infty, \infty)$. Solution. Since, $W(x, f_1, \dots, f_n) = \begin{vmatrix} x & e^x & e^{-x} \\ 1 & e^x & -e^{-x} \\ 0 & e^x & e^{-x} \end{vmatrix} = 2x \neq 0 \text{ for all } x \neq 0 \text{ in } I,$ hence the function are linearly independent on I.

Corollary.

If the functions $f_1, f_2, ..., f_n$ are linearly dependent on an interval *I*, then $W(x, f_1, ..., f_n) = 0$ for all *x* in *I*.

But, if $W(x, f_1, ..., f_n) = 0$ for all x in the interval I, it does not necessarily mean that f_1, f_2, \ldots, f_n are linearly dependent on I. **Example.** The functions $f(x) = x^2$, and g(x) = x |x|are linearly independent on I = [-1, 1], (check), but $W(x, f, g) = \begin{vmatrix} x^2 & x | x \\ 2x & 2 | x \end{vmatrix} = 0, \text{ for all } x \text{ in } I.$

Theorem. Let $y_1, y_2, ..., y_k$ be solutions of the Hom. L.D.E.

$$a_{n}(x)\frac{d^{n}y}{dx^{n}} + a_{n-1}(x)\frac{d^{n-1}y}{dx^{n-1}} + \dots + a_{1}(x)\frac{dy}{dx} + a_{0}(x)y = 0,$$

on an interval *I*, then for any constants $c_1, c_2, ..., c_k$ the function $y = c_1 y_1 + c_2 y_2 + ... + c_k y_k$ is also a solution on the interval *I*.

<u>Definition.</u> Any set $y_1, y_2, ..., y_n$ of *n* linearly independent solutions of the n^{th} order Hom. L.D.E.

$$a_{n}(x)\frac{d^{n}y}{dx^{n}} + a_{n-1}(x)\frac{d^{n-1}y}{dx^{n-1}} + \dots + a_{1}(x)\frac{dy}{dx} + a_{0}(x)y = 0, \quad (1)$$

on an interval *I*, is called a Fundamental Set of Solutions on this interval.

Theorem. Let $y_1, y_2, ..., y_n$ be *n* solutions of the Hom. L.D.E.

$$a_{n}(x)\frac{d^{n}y}{dx^{n}} + a_{n-1}(x)\frac{d^{n-1}y}{dx^{n-1}} + \dots + a_{1}(x)\frac{dy}{dx} + a_{0}(x)y = 0,$$

on an interval I. Then these solutions are linearly independent on I if and only if

$$W(x, y_1, \dots, y_n) \neq 0$$

For every x in I.

<u>Definition.</u> Let $y_1, y_2, ..., y_n$ be a fundamental set of solutions of the Hom. L.D.E.

$$a_{n}(x)\frac{d^{n}y}{dx^{n}} + a_{n-1}(x)\frac{d^{n-1}y}{dx^{n-1}} + \dots + a_{1}(x)\frac{dy}{dx} + a_{0}(x)y = 0,$$

on an interval I. Then, the general solution on I is defined by

$$y = c_1 y_1 + c_2 y_2 + \dots + c_n y_n,$$

where $c_1, c_2, ..., c_n$ are arbitrary constants.

Example. Verify that $y_1 = 1$, $y_2 = e^x$, and $y_3 = e^{-x}$ Form a fundamental set of solutions of the H.D.E. y'''-y'=0,

on the interval $I = (-\infty, \infty)$ and write down the general solution.

Solution. It is easy to check that y_1, y_2 and y_3 are solutions of Eq.(1). On the other hand we have

$$W(x, y_1, y_2, y_3) = \begin{vmatrix} 1 & e^x & e^{-x} \\ 0 & e^x & -e^{-x} \\ 0 & e^x & e^{-x} \end{vmatrix} = 2 \neq 0 \text{ for all } x \text{ in } I,$$

hence they are linearly independent on *I*. Therefore the general solution is $y = c_1 + c_2 e^x + c_3 e^{-x}$. Definition.

Let \mathcal{Y}_p be a given particular solution of the nonhomogeneous L.D.E.

 $a_{n}(x)\frac{d^{n}y}{dx^{n}} + a_{n-1}(x)\frac{d^{n-1}y}{dx^{n-1}} + \dots + a_{1}(x)\frac{dy}{dx} + a_{0}(x)y = g(x), \quad (1)$ on an interval *I* and let

$$y_c = c_1 y_1 + c_2 y_2 + \dots + c_n y_n,$$

be the general solution of the associated Hom. D.E.

$$a_n(x)\frac{d^n y}{dx^n} + a_{n-1}(x)\frac{d^{n-1} y}{dx^{n-1}} + \dots + a_1(x)\frac{dy}{dx} + a_0(x)y = 0,$$

on the interval, then the general solution of Eq.(1) is

$$y = y_c + y_p = c_1 y_1 + c_2 y_2 + \dots + c_n y_n + y_p.$$

Example. Verify that $y = c_1 + c_2 e^x + c_3 e^{-x} + x^3 - x$ is the general solution of the Nonhom. D.E. $y'''-y'=7-3x^2$,

on the interval $I = (-\infty, \infty)$.

Solution. It is easy to see that $y_1 = 1$, $y_2 = e^x$ and $y_3 = e^{-x}$ are solutions of the Hom. D.E. y'''-y'=0, and

$$W(x, y_1, y_2, y_3) = \begin{vmatrix} 1 & e^x & e^{-x} \\ 0 & e^x & -e^{-x} \\ 0 & e^x & e^{-x} \end{vmatrix} = 2 \neq 0 \text{ for all } x \text{ in } I,$$

hence they are linearly independent on *I*. Hence $y_c = c_1 + c_2 e^x + c_3 e^{-x}$. On the other hand the function $y = x^3 - x$ satisfies the Nonhom. D.E. $y'''-y'=7-3x^2$, i.e. $y_p = x^3 - x$ is a particular solution. Hence $y = y_c + y_p = c_1 + c_2 e^x + c_3 e^{-x} + x^3 - x$, is the general solution of the above Nonhom. D.E.