Mongi BLEL

Fundamental

Linear Differential Equations of Higher Order

Mongi BLEL

Department of Mathematics King Saud University

August 25, 2024

Table of contents

Linear **Differential** Equations of [Higher Order](#page-0-0)

Mongi BLEL

[Theorem and](#page-3-0)

1 [Existence Theorem and Fundamental Set of Solutions](#page-3-0)

Set of Solutions

Existence Theorem and Fundamental Set of **Solutions**

Linear Differential Equations of [Higher Order](#page-0-0)

Mongi BLEL

Existence [Theorem and](#page-3-0) Fundamental Set of **Solutions**

Definition

The general linear differential equation of order n is an equation that can be written

$$
a_n(x)\frac{d^n y}{dx^n} + a_{n-1}(x)\frac{d^{n-1} y}{dx^{n-1}} + \ldots + a_1(x)\frac{dy}{dx} + a_0(x)y = R(x),
$$

where R and the coefficients a_1, a_2, \ldots, a_n are functions of x defined on an interval I . The equation (1) is called a homogeneous linear differential equation if the function $R(x)$ is zero for all $x \in I$. Suppose that the coefficients a_1, a_2, \ldots, a_n and the function R are continuous on an interval I such that $a_n(x)$ is never zero on I, then the equation [\(1\)](#page-3-1) is said to be normal on *I*. If R is not equal to zero on *I*, the equation (1) is called non - homogeneous linear differential equation.

Mongi BLEL

Existence [Theorem and](#page-3-0) Fundamental Set of **Solutions**

Example

$$
\frac{d^2y}{dt^2} + w^2y = 0
$$
 (undamped free vibration).

$$
L\frac{d^2q}{dt^2} + R\frac{dq}{dt} + \frac{1}{c}q = E_0 \cos(wt) \qquad (LRC - circuit).
$$

 $x^2y'' + xy' + \lambda^2y = 0$ (Bessel differential equation).

Mongi BLEL

Existence [Theorem and](#page-3-0) Fundamental Set of Solutions

Now we suppose that y_1, y_2, \ldots, y_k are solutions of the homogeneous equation

$$
a_n(x)y^{(n)} + a_{n-1}(x)y^{(n-1)} + \ldots + a_1(x)y' + a_0(x)y = 0,
$$

then for all for all c_1, c_2, \ldots, c_k in $\mathbb R$

$$
y=c_1y_1+c_2y_2+\ldots+c_ky_k,
$$

is also a solution of [\(6\)](#page-5-0).

Mongi BLEL

Existence [Theorem and](#page-3-0) Fundamental Set of Solutions

So we have the following theorem

Theorem (Linear combination)

Any linear combination of solutions of a homogeneous linear differential equation is also a solution.

Now we give the existence and uniqueness theorem for an initial value problem (IVP) for nth-order linear differential equation.

Mongi BLEL

Theorem (Existence Theorem)

Existence [Theorem and](#page-3-0) Fundamental Set of Solutions

Given an nth-order linear differential equation

$$
a_n(x)y^{(n)} + a_{n-1}(x)y^{(n-1)} + \ldots + a_1(x)y' + a_0(x)y = R(x).
$$

that is normal on an interval I. Suppose $x_0 \in I$ and $y_0, y_1, \ldots, y_{n-1}$ are n arbitrary real numbers. Then there exists a unique solution $y = y(x)$ of [\(4\)](#page-7-0) satisfying the initial conditions

$$
y(x_0) = y_0
$$
, $y'(x_0) = y_1$, ..., $y^{(n-1)}(x_0) = y_{n-1}$.

Mongi BLEL

Existence [Theorem and](#page-3-0) Fundamental Set of Solutions

Example

Discuss the existence of unique solution of (IVP)

$$
\begin{cases} (x^2 + 1)y'' + x^2y' + 5y = \cos(x) \\ y(3) = 2, \quad y'(3) = 1. \end{cases}
$$

Solution.

The functions

$$
a_2(x) = x^2 + 1, a_1(x) = x^2, a_0(x) = 5,
$$

and

$$
R(x) = \cos(x).
$$

are continuous on $I = \mathbb{R} = (-\infty, +\infty)$, and $a_2(x) \neq 0$ for all $x \in \mathbb{R}$, the point $x_0 = 3 \in I$. Then Theorem [\(4\)](#page-7-1) assures that the *IVP* has a unique solution on \mathbb{R} .

Mongi BLEL

Existence [Theorem and](#page-3-0) Fundamental Set of **Solutions**

Example

Find an interval I for which the initial values problem (IVP)

$$
\begin{cases}\nx^2y'' + \frac{x}{\sqrt{2-x}}y' + \frac{2}{\sqrt{x}}y = 0, \\
y(1) = 0, \quad y'(1) = 1.\n\end{cases}
$$

.

has a unique solution around $x_0 = 1$.

Solution. The function $a_2(x) = x^2$, is continuous on $\mathbb R$ and $a_2(x) \neq 0$ if $x > 0$ or $x < 0$. But $x_0 = 1 \in I_1 = (0, \infty)$. The function $a_1(x) = \frac{x}{\sqrt{2-x}}$, is continuous on $l_2 = (-\infty, 2)$ and the function

Mongi BLEL

Existence [Theorem and](#page-3-0) Fundamental Set of Solutions

 $a_0(x) = \frac{2}{\sqrt{2}}$ $\frac{1}{x}$, is continuous on $I_1 = (0, \infty)$. Then the (IVP) has a unique solution on $I_1 \cap I_2 = (0, \, 2) = I.$ We can take any interval $I_3 \subset (0, 2)$ such that $x_0 = 1 \in I_3$. So I is that the largest interval for which the (IVP) has a unique solution.

Mongi BLEL

Existence [Theorem and](#page-3-0) Fundamental Set of Solutions

Example

Find an interval I for which the IVP

$$
\begin{cases} (x-1)(x-3)y'' + xy' + y = x^2, \\ y(2) = 1, y'(2) = 0. \end{cases}
$$

has a unique solution about $x_0 = 2$.

Solution.

The functions

$$
a_2(x) = (x - 1)(x - 3) a_1(x) = x a_0(x) = 1 R(x) = x^2,
$$

are continuous on R. But $a_2(x) \neq 0$ if $x \in (-\infty, 1)$ or $x \in (1, 1)$ 3) or $x \in (3, \infty)$. As $x_0 = 2$ so we take $I = (1, 3)$. Then the *IVP* has a unique solution on $I = (1, 3)$

Mongi BLEL

Existence [Theorem and](#page-3-0) Fundamental Set of Solutions

Example

From Theorem [\(4\)](#page-7-1), we deduce that the IVP

$$
\begin{cases}\n3y''' + 5y'' - y' + 7y = 0, \\
y(1) = 0, \ y'(1) = 0, \ y''(1) = 0.\n\end{cases}
$$

has a unique solution $y = 0$ on \mathbb{R} .

Mongi BLEL

Existence [Theorem and](#page-3-0) **Eundamental** Set of Solutions

Definition (Linearly Dependent Solutions)

Let f_1 , f_2 , ..., f_n be n functions defined on an interval I. The functions f_1, f_2, \ldots, f_n are said to be linearly dependent on *I* if there exist *n* constants c_1, c_2, \ldots, c_n not all zero (i.e. $(c_1, c_2, \ldots, c_n) \neq (0, 0, \ldots, 0)$ such that

 $c_1 f_1(x) + c_2 f_2(x) + \ldots + c_n f_n(x) = 0$ for all $x \in I$.

Mongi BLEL

Existence [Theorem and](#page-3-0) Fundamental Set of Solutions

Example

Prove that the functions

$$
f_1(x) = x, f_2(x) = e^x, f_3(x) = xe^x,
$$

and

$$
f_4(x)=(2-3x)e^x,
$$

are linearly dependent on R.

Solution.

$$
f_4(x) = (2-3x)e^x = 2e^x - 3xe^x = 2f_2(x) - 3f_3(x) + 0f_1(x),
$$

hence

$$
0f_1(x) + 2f_2(x) - 3f_3(x) - f_4(x) = 0, \text{ for all } x \in \mathbb{R}.
$$

Mongi BLEL

Existence [Theorem and](#page-3-0) Fundamental Set of Solutions

So there exist $c_1 = 0$, $c_2 = 2$, $c_3 = -3$, and $c_4 = -1$ such that

 $c_1f_1(x) + c_2f_2(x) + c_3f_3(x) + c_4f_4(x) = 0$, for all $x \in \mathbb{R}$.

Then f_1 , f_2 , f_3 and f_4 are linearly dependent on \mathbb{R} .

Mongi BLEL

Existence [Theorem and](#page-3-0) Fundamental Set of Solutions

Example

Show that $f_1(x)=\cos(2x)$, $f_2(x)=1$, $f_3(x)=\cos^2(x)$ are linearly dependent on \mathbb{R} .

Solution.

We know that

$$
f_3(x) = \cos^2(x) = \frac{1 + \cos(2x)}{2} = \frac{1}{2} f_2(x) + \frac{1}{2} f_1(x),
$$

for all $x \in \mathbb{R}$.

Mongi BLEL

Existence [Theorem and](#page-3-0) Fundamental Set of Solutions

Then there exist $c_1=c_2=\frac{1}{2}$ $\frac{1}{2}$ and $c_3 = -1$ such that $c_1f_1(x) + c_2f_2(x) + c_3f_3(x) = 0$ for all $x \in \mathbb{R}$. So f_1 , f_2 , and f_3 are linearly dependent on \mathbb{R} .

Mongi BLEL

Existence [Theorem and](#page-3-0) Fundamental Set of Solutions

Example Show that

$f_1(x) = 1, f_2(x) = \sec^2(x)$ and $f_3(x) = \tan^2(x)$

are linearly dependent on $(0, \frac{\pi}{2})$.

Solution. We know that

$$
f_2(x) = \sec^2(x) = 1 + \tan^2(x) = f_1(x) + f_3(x),
$$

hence

$$
f_1(x) - f_2(x) + f_3(x) = 0 \text{ for all } x \in \left(0, \frac{\pi}{2}\right).
$$

Mongi BLEL

Existence [Theorem and](#page-3-0) Fundamental Set of Solutions

So there exist
$$
c_1 = c_3 = 1
$$
 and $c_2 = -1$ such that
 $c_1 f_1(x) + c_2 f_2(x) + c_3 f_3(x) = 0$ for all $x \in \left(0, \frac{\pi}{2}\right)$.

So f_1 , f_2 and f_3 are linearly dependent on $x \in \left(0, \frac{\pi}{2}\right)$.

Mongi BLEL

Existence [Theorem and](#page-3-0) Fundamental Set of Solutions

Definition (Linearly Independent Solutions)

Let f_1, f_2, \ldots, f_n be n functions defined on an interval I. The functions f_1, f_2, \ldots, f_n are said to be linearly independent on I if the equation

 $c_1f_1(x) + c_2f_2(x) + \ldots + c_nf_n(x) = 0$, for all $x \in I$.

is true only for $c_1 = c_2 = \ldots = c_n = 0$.

Mongi BLEL

Existence [Theorem and](#page-3-0) Fundamental Set of Solutions

Example

Show that $f_1(x) = x$ and $f_2(x) = x^2$ are linearly independent on $I = [-1, 1]$.

Solution. Let $c_1, c_2 \in \mathbb{R}$ such that

 $c_1f_1(x) + c_2f_2(x) = 0$, for all $x \in I$.

Mongi BLEL

Existence [Theorem and](#page-3-0) Fundamental Set of Solutions

 $c_1x + c_2x^2 = 0$ for all $-1 \le x \le 1$, then for $x=1$ and $x=-\frac{1}{2}$ $\frac{1}{2}$ we have $c_1 + c_2 = 0$. and $-\frac{1}{2}$ $\frac{1}{2}c_1 + \frac{1}{4}$ $\frac{1}{4}c_2=0,$

We have to prove that $c_1 = c_2 = 0$. As

which implies that $c_1 = c_2 = 0$. Then f_1 , and f_2 are linearly independent on I.

Mongi BLEL

Example

Show that

Existence [Theorem and](#page-3-0) Fundamental Set of Solutions

$$
f_1(x) = \sin(x) f_2(x) = \sin(2x),
$$

are linearly independent on $I = [0, \pi)$.

Solution. Let c_1 , $c_2 \in I$ such that

$$
c_1 f_1(x) + c_2 f_2(x) = 0
$$
 for all $x \in I$.

We have to show that $c_1 = c_2 = 0$. In fact for $x = \frac{\pi}{4}$ $\frac{\pi}{4}$, and $x=\frac{\pi}{3}$ $\frac{\pi}{3}$ we have

$$
\left\{\begin{array}{c}c_1\sin(\frac{\pi}{4})+c_2\sin(\frac{\pi}{2})=0,\\c_1\sin(\frac{\pi}{3})+c_2\sin(2\frac{\pi}{3})=0,\end{array}\right.
$$

Mongi BLEL

Existence [Theorem and](#page-3-0) Fundamental Set of Solutions

hence

$$
\frac{1}{\sqrt{2}}c_1+c_2=0, \quad \frac{\sqrt{3}}{2}c_1+\;\frac{\sqrt{3}}{2}c_2=0,
$$

which implies that $c_1 = c_2 = 0$. Then f_1 , and f_2 are linearly independent on I.

Mongi BLEL

Existence [Theorem and](#page-3-0) Fundamental Set of Solutions

Example

Show that

$$
f_1(x) = 1, f_2(x) = e^x
$$
, and $f_3(x) = e^{-x}$.

are linearly independent on \mathbb{R} .

Solution.

Let c_1 , c_2 , $c_3 \in \mathbb{R}$ such that

$$
c_1 f_1(x) + c_2 f_2(x) + c_3 f_3(x) = 0
$$
, for all $x \in \mathbb{R}$.

Mongi BLEL

Existence [Theorem and](#page-3-0) Fundamental Set of Solutions

We have to prove that $c_1 = c_2 = c_3 = 0$. In fact we have $c_1 + c_2 e^x + c_3 e^{-x} = 0$, for all $x \in \mathbb{R}$, then for the values $x = 0$, $x = 1$, $x = -1$, we have $\sqrt{ }$

$$
\left\{\begin{array}{c}c_1+c_2+c_3=0\\c_1+c_2e+c_3e^{-1}=0\\c_1+c_2e^{-1}+c_3e=0,\end{array}\right.
$$

which implies that $c_1 = c_2 = c_3 = 0$. Then f_1 , f_2 and f_3 are linearly independent on \mathbb{R} .

Mongi BLEL

Existence [Theorem and](#page-3-0) Fundamental Set of Solutions

Now we shall obtain a sufficient condition that n functions are linearly independent on an interval I. Let us assume that each of the functions f_1, f_2, \ldots, f_n is differentiable at least $(n-1)$ times in the interval *I*. Let $c_1, c_2, \ldots, c_n \in \mathbb{R}$ such that

 $c_1f_1(x) + c_2f_2(x) + \ldots + c_nf_n(x) = 0$, for all $x \in I$.

Mongi BLEL

Existence [Theorem and](#page-3-0) Fundamental Set of Solutions

We have

$$
\begin{cases}\n c_1 f'_1(x) + c_2 f'_2(x) + \ldots + c_n f'_n(x) = 0 \\
 c_1 f''_1(x) + c_2 f''_2(x) + \ldots + c_n f''_n(x) = 0 \\
 \ldots \\
 c_1 f_1^{(n-1)}(x) + c_2 f_2^{(n-1)}(x) + \ldots + c_n f_n^{(n-1)}(x) = 0,\n\end{cases}
$$

for all $x \in I$. The nature of the solutions of these *n* linear equations in c_1, c_2, \ldots, c_n will be determined by the value of the determinant

$$
W(x, f_1, f_2 ..., f_n) = \begin{vmatrix} f_1(x) & f_2(x) & \dots & f_n(x) \\ f'_1(x) & f'_2(x) & \dots & f'_n(x) \\ \dots & \dots & \dots & \dots & \dots \\ f_1^{(n-1)}(x) & f_2^{(n-1)}(x) & \dots & f_n^{(n-1)}(x) \end{vmatrix}
$$

Mongi BLEL

Existence [Theorem and](#page-3-0) Fundamental Set of Solutions

Now if $x_0 \in I$ such that $W(x_0, f_1, f_2, \ldots, f_n) \neq 0$, then $c_1 = c_2 = \ldots = c_n = 0$, and hence the functions f_1, f_2, \ldots, f_n are linearly independent on I.

Mongi BLEL

Existence [Theorem and](#page-3-0) Fundamental Set of Solutions

Definition

The function $W(x, f_1, f_2, \ldots, f_n)$ defined by the equation [\(29\)](#page-28-0) is called Wronskian of the functions f_1, f_2, \ldots, f_n .

Mongi BLEL

Existence [Theorem and](#page-3-0) Fundamental Set of Solutions

Example

Show that $f_1(x) = 1$, $f_2(x) = x$, ,..., $f_n(x) = x^{n-1}$ are linearly independent on R.

Solution.

We calculate

$$
W(x, f_1, f_2 ..., f_n) = \begin{vmatrix} 1 & x & x^2 & \dots & x^{n-1} \\ 0 & 1 & 2x & \dots & (n-1)x^{n-2} \\ 0 & 0 & 2 & \dots & (n-1)(n-2)x^{n-3} \\ \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & 0 & \dots & (n-1)! \end{vmatrix}
$$

 $\overline{}$ I $\overline{}$ I $\overline{}$ I $\overline{}$ I $\overline{}$ $\overline{}$

and we find $W(x, f_1, f_2, ..., f_n) = 0!1!2!... (n-1)! \neq 0$ for all $x \in \mathbb{R}$. Then f_1, f_2, \ldots, f_n are linearly independent on \mathbb{R} .

Mongi BLEL

Existence [Theorem and](#page-3-0) Fundamental Set of Solutions

Example

Prove that
$$
f_1(x) = x^2
$$
, $f_2(x) = x^2 \ln(x)$ are linearly independent on $(0, \infty)$.

Solution.

We use the definition of

$$
W(x, f_1, f_2) = \begin{vmatrix} x^2 & x^2 \ln(x) \\ 2x & 2x \ln(x) + x \end{vmatrix}
$$

= $2x^3 \ln(x) + x^3 - 2x^3 \ln(x) = x^3 \neq 0$ for all $x \in \mathbb{C}$

then f_1 and f_2 are linearly independent on $(0, \infty)$.

Mongi BLEL

Existence [Theorem and](#page-3-0) Fundamental Set of Solutions

Example

Show that

$$
f_1(x) = x^2 \text{and } f_2(x) = x |x|,
$$

are

 (i) linearly dependent on $[0, 1]$ (ii) linearly independent on $[-1, 1]$

Mongi BLEL

Existence [Theorem and](#page-3-0) Fundamental Set of Solutions

Solution. (i) on $[0,1]$ we have

$$
f_1(x)=f_2(x)=x^2,
$$

hence

$$
f_1(x) - f_2(x) = 0
$$
, for all $0 \le x \le 1$.

So there exist $c_1 = 1$, $c_2 = -1$ such that

 $c_1f_1(x) + c_2f_2(x) = 0$, for all $0 \le x \le 1$.

Then f_1 and f_2 are linearly dependent on [0, 1]. (ii) Let $c_1, c_2 \in \mathbb{R}$ be such that

$$
c_1 f_1(x) + c_2 f_2(x) = 0
$$
, for all $-1 \le x \le 1$,

hence

$$
c_1x^2 + c_2x |x| = 0 \text{ for all } -1 \le x \le 1.
$$

Mongi BLEL

Existence [Theorem and](#page-3-0) Fundamental Set of Solutions

Now for $x = 1$ and $x = -1$ we have $c_1 + c_2 = 0$ and $c_1 - c_2 = 0$ which implies that $c_1 = c_2 = 0$. Then f_1 and f_2 are linearly independent on $[-1, 1]$.

Remark 1 :

(i) If f_1, f_2, \ldots, f_n are linearly dependent on an interval I and each of the functions f_1, f_2, \ldots, f_n is differentiable at least $(n-1)$ times on *I*, then

$$
W(x, f_1, f_2, \ldots, f_n) = 0, \text{ for all } x \in I.
$$

Mongi BLEL

Existence [Theorem and](#page-3-0) Fundamental Set of Solutions

For example, it was proved that

$$
f_1(x) = 1
$$
, $f_2(x) = \sec^2(x)$, and $f_3(x) = \tan^2(x)$.

are linearly dependent on $\left(0,\,\frac{\pi}{2}\right)$, then

$$
W(x, f_1, f_2, f_3)
$$

=
$$
\begin{vmatrix} 1 & \sec^2(x) & \tan^2(x) \\ 0 & 2\sec^2(x)\tan(x) & 2\tan(x)\sec^2(x) \\ 0 & 4\sec^2(x)\tan^2(x) + 2\sec^4(x) & 4\sec^2(x)\tan^2(x) + 2\sec^2(x) \end{vmatrix}
$$

= 0,

for all $x \in \left(0, \frac{\pi}{2}\right)$. (ii) If $W(x, f_1, f_2, \ldots, f_n) = 0$ for all $x \in I$, then the functions f_1, f_2, \ldots, f_n may be linearly independent or dependent on I.

Existence [Theorem and](#page-3-0) Fundamental Set of Solutions

Example

We consider the functions

$$
f_1(x) = x^2
$$
 and $f_2(x) = x |x|$.

on the interval $I = [-1, 1]$. Prove that

 $W(x, f_1, f_2) = 0$, for all $x \in I$.

Mongi BLEL

Existence [Theorem and](#page-3-0) Fundamental Set of Solutions

Solution.

1 For $0 < x \leq 1$, we have

$$
W(x, f_1, f_2) = \begin{vmatrix} x^2 & x^2 \\ 2x & 2x \end{vmatrix} = 0.
$$

2 For $-1 \le x < 0$, we have

$$
W(x, f_1, f_2) = \begin{vmatrix} x^2 & -x^2 \\ 2x & -2x \end{vmatrix} = 0.
$$

3 For $x = 0$ we have

$$
W(0, f_1(0), f_2(0)) = \begin{vmatrix} f_1(0) & f_2(0) \\ f'_1(0) & f'_2(0) \end{vmatrix} = \begin{vmatrix} 0 & 0 \\ 0 & 0 \end{vmatrix} = 0.
$$

Mongi BLEL

Existence [Theorem and](#page-3-0) Fundamental Set of Solutions

So $W(x, f_1, f_2) = 0$ for all $x \in [-1, 1]$, even these functions f_1 and f_2 are linearly independent on $[-1, 1]$ (see the example (13)), where $f'_{2}(0) = 0$.

Mongi BLEL

Existence [Theorem and](#page-3-0) Fundamental Set of **Solutions**

The main result in this section is given by the following theorem.

Theorem

If y_1, y_2, \ldots, y_n are solutions of the differential equation

$$
a_n(x)y^{(n)} + a_{n-1}(x)y^{(n-1)} + \ldots + a_1(x)y' + a_0(x)y = 0,
$$

where each $a_i(x)$ is defined and continuous on an interval I and $a_n(x) \neq 0$ for all $x \in I$, then y_1, y_2, \ldots, y_n are linearly independent on I if and only if

 $W(x, y_1, y_2, \ldots, y_n) \neq 0$ for all $x \in I$.

Mongi BLEL

Existence [Theorem and](#page-3-0) Fundamental Set of Solutions

Example

We know that the functions x and $\ x^2$ are linearly independent on the interval $-1 \le x \le 1$. However

$$
W(x, f_1(x), f_2(x)) = \begin{vmatrix} x & x^2 \\ 1 & 2x \end{vmatrix} = x^2,
$$

so that

 $W(0, f_1(0), f_2(0)) = 0$, where $x = 0 \in I = [-1, -1]$.

Mongi BLEL

Existence [Theorem and](#page-3-0) Fundamental Set of **Solutions**

This fact does not contradict Theorem [\(22\)](#page-40-0), because there is no second- order linear differential equation with the interval of definition $-1\leq \textcolor{red}{x} \leq 1$ that has $\textcolor{red}{x}$ and $\textcolor{red}{x}^2$ as solutions. We can verify that $y_1 = x$ and $y_2 = x^2$ are solutions of the secondorder linear differential equation

$$
x^2y'' - 2xy' + 2y = 0,
$$

where the interval of definition I must exclude $x = 0$, since we have assumed that $a_2(x)=x^2\neq 0\,\,$ in $\,$. So that we conclude that the Theorem [\(4\)](#page-7-1) is not contradicted by this example, and we should distinguish between the functions which are linearly independent on an interval *as algebraic functions, and the* functions which are linearly independent on an interval I, and are solutions of a linear differential equation.

Mongi BLEL

Existence [Theorem and](#page-3-0) Fundamental Set of Solutions

Example

It is easy to see that the functions

$$
y_1 = x, y_2 = x^2,
$$

and

$$
y_3=x^3.
$$

are solutions of the differential equation

$$
x^3y''' - 3x^2y'' + 6xy' - 6y = 0.
$$

Show that y_1 , y_2 and y_3 are linearly independent on $(0, \infty)$.

Mongi BLEL

Existence [Theorem and](#page-3-0) Fundamental Set of Solutions

Solution.

Here we have $a_3(x)=x^3\neq 0$ for all $\;x>0\;$ or $x< 0.$ By using the Wronskian we have

$$
W(x, y_1, y_2, y_3) = \begin{vmatrix} x & x^2 & x^3 \\ 1 & 2x & 3x^2 \\ 0 & 2 & 6x \end{vmatrix} = 2x^3 \neq 0.
$$

for all $x \in (0, \infty)$, or for all $x \in (-\infty, 0)$. So y_1 , y_2 and y_3 are linearly independent on $(0, \infty)$ or on $(-\infty, 0)$. But as algebraic functions y_1 , y_2 and y_3 are linearly independent on \mathbb{R} .

Mongi BLEL

Existence [Theorem and](#page-3-0) Fundamental Set of Solutions

Definition (Fundamental Set of Solutions)

Any set y_1, y_2, \ldots, y_n of *n* functions linearly independent solutions of the homogeneous linear nth-order differential equation [\(22\)](#page-40-1) on an interval I is said to be a fundamental set of solutions on I.

Here the number of functions which form the fundamental set of solutions on i equals to the order of the equation [\(22\)](#page-40-1).

Mongi BLEL

Existence [Theorem and](#page-3-0) **Eundamental** Set of Solutions

Theorem

Let y_1, y_2, \ldots, y_n be a fundamental set of solutions of the homogeneous linear nth-order differential equation [\(22\)](#page-40-1) on an interval I. Then for any solution y of Eq [\(22\)](#page-40-1) on I, there exist n constants $c_1, c_2, \ldots, c_n \in \mathbb{R}$, such that

 $y(x) = c_1y_1(x) + c_2y_2(x) + \ldots + c_ny_n(x)$.

Mongi BLEL

Existence [Theorem and](#page-3-0) Fundamental Set of Solutions

Theorem (Existence of a fundamental set)

There exist a fundamental set of solutions for homogeneous linear nth-order differential equation [\(22\)](#page-40-1) on an interval I.

Mongi BLEL

Definition (General Solution of the Homogeneous Equation)

Existence [Theorem and](#page-3-0) Fundamental Set of **Solutions**

Let $y_1, y_2,..., y_n$ be a fundamental set of solutions of homogeneous linear nth-order differential equation [\(22\)](#page-40-1) on an interval I.The general solution of the equation [\(22\)](#page-40-1) on I is defined by

 $y(x) = c_1y_1(x) + c_2y_2(x) + \ldots + c_ny_n(x), \quad x \in I$

where c_1, c_2, \ldots, c_n are arbitrary constants. The general solution of [\(22\)](#page-40-1) is also called the complete solution of [\(22\)](#page-40-1).

Example

Verify that $y_1 = e^{2x}$, and $y_2 = e^{-3x}$ form a fundamental set of solutions of the differential equation

$$
y''+y'-6y=0,
$$

and find the general solution.

Solution. Substituting

$$
y_1 = e^{2x}
$$
, $y'_1 = 2e^{2x}$, $y''_1 = 4e^{2x}$,

in the differential equation, we get

$$
4e^{2x} + 2e^{2x} - 6e^{2x} = 0.
$$

Existence [Theorem and](#page-3-0) Fundamental Set of Solutions

Linear Differential Equations of [Higher Order](#page-0-0) Mongi BLEL

Mongi BLEL

Existence [Theorem and](#page-3-0) Fundamental Set of **Solutions**

Hence $y_1 = e^{2x}$, is a solution of the differential equation. By the same method we can prove that $y_2=e^{-3x},$ is also a solution of the differential equation. We now have

$$
W(x, e^{2x}, e^{-3x}) = \begin{vmatrix} e^{2x} & e^{-3x} \\ 2e^{2x} & -3e^{-3x} \end{vmatrix} = -5e^{-x} \neq 0 \text{ for all } x \in \mathbb{R}.
$$

Then y_1 and y_2 are linearly independent on \mathbb{R} . From Theorem ([??](#page-0-1)), we deduce the general solution of the differential equation is given by

$$
y(x) = c_1y_1(x) + c_2y_2(x).
$$

where c_1 , $c_2 \in \mathbb{R}$.

Mongi BLEL

Existence [Theorem and](#page-3-0) Fundamental Set of Solutions

Example

It is easy to see that the functions

$$
y_1 = e^x
$$
, $y_2 = e^{2x}$, and $y_3 = e^{3x}$,

are solutions of the differential equation

$$
y''' - 6y'' + 11y' - 6y = 0.
$$

Find the general solution of the differential equation.

Solution.

Since

$$
W(x, e^{x}, e^{2x}, e^{3x}) = \begin{vmatrix} e^{x} & e^{2x} & e^{3x} \ e^{x} & 2e^{2x} & 3e^{3x} \ e^{x} & 4e^{2x} & 9e^{3x} \end{vmatrix} = 2e^{6x} \neq 0,
$$

for all $x \in \mathbb{R}$

Mongi BLEL

Existence [Theorem and](#page-3-0) Fundamental Set of Solutions

We deduce that

$$
y_c = c_1 e^x + c_2 e^{2x} + c_3 e^{3x}.
$$

is the general solution of the differential equation.

Example

Prove that

$$
y_1 = x^3 e^x
$$
, and $y_2 = e^x$,

Existence [Theorem and](#page-3-0) Fundamental Set of Solutions

Linear **Differential** Equations of [Higher Order](#page-0-0) Mongi BLEL

are solutions of the differential equation

$$
xy'' - 2(x + 1)y' + (x + 2)y = 0,
$$

where $x > 0$. Find also the general solution of the differential equation.

Solution.

Substituting

$$
y_1 = x^3 e^x
$$
, $y'_1 = 3x^2 e^x + x^3 e^x$, $y''_1 = 6xe^x + 6x^2 e^x + x^3 e^x$,

in the differential equation we obtain

3 x 3 x 4 x 3 x 4 x x n → 2 2_x x 2x 2x 2x 2x \sim

Mongi BLEL

Existence [Theorem and](#page-3-0) Fundamental Set of Solutions

$$
W(x, x^{3}e^{x}, e^{x}) = \begin{vmatrix} x^{3}e^{x} & e^{x} \\ 3x^{2}e^{x} + x^{3}e^{x} & e^{x} \end{vmatrix} = -3x^{2}e^{x} \neq 0, \text{ for all } x
$$

Then

$$
y_{1} = x^{3}e^{x},
$$

and

$$
y_2=e^x.
$$

are linearly independent on $(0, \infty)$, and we conclude that

$$
y_c=c_1x^3e^x+c_2e^x,
$$

is the general solution of the differential equation.

Mongi BLEL

Existence [Theorem and](#page-3-0) Fundamental Set of **Solutions**

Remark 2 :

The property of general solution exists only in the homogeneous linear nth -order differential equation [\(22\)](#page-40-1) but does not exist in the homogeneous non- linear differential equation, for example the differential equation

$$
(xy'+1)(yy'+1) = 0.
$$

is a non-linear first order differential equation has not general solution, because it has two family of curves of solutions $y = -\ln |x\mathfrak{c}_1|$ such that $x \neq 0$, and an arbitrary constant $c_1\neq 0$, $y^2+2x=c_2$ where $y\neq 0$ and c_2 is an arbitrary constant.

Mongi BLEL

Existence [Theorem and](#page-3-0) Fundamental Set of Solutions

Example

Given that

$$
y=c_1e^x+c_2e^{-x},
$$

is a two parameters family of solutions of

$$
y'' - y = 0
$$
 on $(-\infty, \infty)$,

find a curve of the family satisfying the initial conditions $y(0) = 0, y'(0) = 1.$

Mongi BLEL

Existence [Theorem and](#page-3-0) **Fundamental** Set of Solutions

Solution.

From Theorem [\(4\)](#page-7-1) the initial value problem

$$
\begin{cases}\n y''(x) - y(x) = 0 \\
 y(0) = 0 \ y'(0) = 1,\n\end{cases}
$$

has a unique solution.

Mongi BLEL

Existence [Theorem and](#page-3-0) Fundamental Set of Solutions

For $y(0) = 0$ we have $c_1 + c_2 = 0$ and for $y'(0) = 1$ we have $c_1-c_2=1$, hence $c_1=\frac{1}{2}$ $\frac{1}{2}$ and $c_2 = -\frac{1}{2}$ $\frac{1}{2}$. So the unique solution of the initial value problem is

$$
y = \frac{1}{2}(e^{x} - e^{-x}) = \sinh(x).
$$