Mongi BLEI

Existence
Theorem and
Fundamental
Set of
Solutions

Linear Differential Equations of Higher Order

Mongi BLEL

Department of Mathematics King Saud University

August 25, 2024

Table of contents

Linear Differential Equations of Higher Order

Mongi BLE

Existence
Theorem and
Fundamental
Set of
Solutions

1 Existence Theorem and Fundamental Set of Solutions

Mongi BLEI

Existence
Theorem and
Fundamental
Set of
Solutions

Existence Theorem and Fundamental Set of Solutions

Linear Differential Equations of Higher Order

Mongi BLE

Existence
Theorem and
Fundamental
Set of
Solutions

Definition

The general linear differential equation of order n is an equation that can be written

$$a_n(x)\frac{d^ny}{dx^n} + a_{n-1}(x)\frac{d^{n-1}y}{dx^{n-1}} + \ldots + a_1(x)\frac{dy}{dx} + a_0(x)y = R(x),$$

where R and the coefficients a_1, a_2, \ldots, a_n are functions of x defined on an interval I. The equation (1) is called a homogeneous linear differential equation if the function R(x) is zero for all $x \in I$. Suppose that the coefficients a_1, a_2, \ldots, a_n and the function R are continuous on an interval I such that $a_n(x)$ is never zero on I, then the equation (1) is said to be normal on I. If R is not equal to zero on I, the equation (1) is called non - homogeneous linear differential equation.

Example

$$\frac{d^2y}{dt^2} + w^2y = 0 \text{ (undamped free vibration)}.$$

$$L\frac{d^2q}{dt^2} + R\frac{dq}{dt} + \frac{1}{c}q = E_0\cos(wt) \qquad (LRC - \text{circuit}).$$

$$x^2y'' + xy' + \lambda^2y = 0$$
 (Bessel differential equation).

Now we suppose that y_1, y_2, \ldots, y_k are solutions of the homogeneous equation

$$a_n(x)y^{(n)} + a_{n-1}(x)y^{(n-1)} + \ldots + a_1(x)y' + a_0(x)y = 0,$$

then for all for all c_1, c_2, \ldots, c_k in \mathbb{R}

$$y = c_1 y_1 + c_2 y_2 + \ldots + c_k y_k,$$

is also a solution of (6).

Mongi BLE

Existence
Theorem and
Fundamental
Set of
Solutions

So we have the following theorem

Theorem (Linear combination)

Any linear combination of solutions of a homogeneous linear differential equation is also a solution.

Now we give the existence and uniqueness theorem for an initial value problem (IVP) for nth-order linear differential equation.

Theorem (Existence Theorem)

Given an nth-order linear differential equation

$$a_n(x)y^{(n)} + a_{n-1}(x)y^{(n-1)} + \ldots + a_1(x)y' + a_0(x)y = R(x).$$

that is normal on an interval I. Suppose $x_0 \in I$ and $y_0, y_1, \ldots, y_{n-1}$ are n arbitrary real numbers. Then there exists a unique solution y = y(x) of (4) satisfying the initial conditions

$$y(x_0) = y_0, \ y'(x_0) = y_1, \dots, y^{(n-1)}(x_0) = y_{n-1}.$$

Mongi BLE

Existence
Theorem and
Fundamental
Set of
Solutions

Example

Discuss the existence of unique solution of (IVP)

$$\begin{cases} (x^2+1)y'' + x^2y' + 5y = \cos(x) \\ y(3) = 2, \quad y'(3) = 1. \end{cases}$$

Solution.

The functions

$$a_2(x) = x^2 + 1, a_1(x) = x^2, a_0(x) = 5,$$

and

$$R(x) = \cos(x)$$
.

are continuous on $I = \mathbb{R} = (-\infty, +\infty)$, and $a_2(x) \neq 0$ for all $x \in \mathbb{R}$, the point $x_0 = 3 \in I$. Then Theorem (4) assures that the *IVP* has a unique solution on \mathbb{R} .

Example

Find an interval I for which the initial values problem (IVP)

$$\begin{cases} x^2y'' + \frac{x}{\sqrt{2-x}}y' + \frac{2}{\sqrt{x}}y = 0, \\ y(1) = 0, \quad y'(1) = 1. \end{cases}$$

has a unique solution around $x_0 = 1$.

Solution. The function $a_2(x)=x^2$, is continuous on $\mathbb R$ and $a_2(x)\neq 0$ if x>0 or x<0. But $x_0=1\in I_1=(0,\infty)$. The function $a_1(x)=\frac{x}{\sqrt{2-x}}$, is continuous on $I_2=(-\infty,2)$ and the function

Existence Theorem and Fundamental Set of Solutions

 $a_0(x)=\frac{2}{\sqrt{x}}$, is continuous on $I_1=(0,\infty)$. Then the (*IVP*) has a unique solution on $I_1\cap I_2=(0,2)=I$. We can take any interval $I_3\subset (0,2)$ such that $x_0=1\in I_3$. So I is that the largest interval for which the (*IVP*) has a unique solution.

Mongi BLE

Existence Theorem and Fundamental Set of Solutions

Example

Find an interval I for which the IVP

$$\begin{cases} (x-1)(x-3)y'' + xy' + y = x^2, \\ y(2) = 1, \quad y'(2) = 0. \end{cases}$$

has a unique solution about $x_0 = 2$.

Solution.

The functions

$$a_2(x) = (x-1)(x-3)$$
 $a_1(x) = x a_0(x) = 1 R(x) = x^2$,

are continuous on \mathbb{R} . But $a_2(x) \neq 0$ if $x \in (-\infty, 1)$ or $x \in (1, 3)$ or $x \in (3, \infty)$. As $x_0 = 2$ so we take I = (1, 3). Then the *IVP* has a unique solution on I = (1, 3)

Mongi BLE

Existence Theorem and Fundamental Set of Solutions

Example

From Theorem (4), we deduce that the *IVP*

$$\begin{cases} 3y''' + 5y'' - y' + 7y = 0, \\ y(1) = 0, y'(1) = 0, y''(1) = 0. \end{cases}$$

has a unique solution y = 0 on \mathbb{R} .

Mongi BLE

Existence
Theorem and
Fundamental
Set of
Solutions

Definition (Linearly Dependent Solutions)

Let f_1, f_2, \ldots, f_n be n functions defined on an interval I. The functions f_1, f_2, \ldots, f_n are said to be linearly dependent on I if there exist n constants c_1, c_2, \ldots, c_n not all zero (i.e. $(c_1, c_2, \ldots, c_n) \neq (0, 0, \ldots, 0)$) such that

$$c_1 f_1(x) + c_2 f_2(x) + \ldots + c_n f_n(x) = 0$$
 for all $x \in I$.

Example

Prove that the functions

$$f_1(x) = x$$
, $f_2(x) = e^x$, $f_3(x) = xe^x$,

and

$$f_4(x)=(2-3x)e^x,$$

are linearly dependent on \mathbb{R} .

Solution.

$$f_4(x) = (2-3x)e^x = 2e^x - 3xe^x = 2f_2(x) - 3f_3(x) + 0f_1(x),$$

hence

$$0f_1(x) + 2f_2(x) - 3f_3(x) - f_4(x) = 0$$
, for all $x \in \mathbb{R}$.

Existence Theorem and Fundamental Set of Solutions

So there exist $c_1=0$, $c_2=2$, $c_3=-3$, and $c_4=-1$ such that

$$c_1f_1(x) + c_2f_2(x) + c_3f_3(x) + c_4f_4(x) = 0$$
, for all $x \in \mathbb{R}$.

Then f_1 , f_2 , f_3 and f_4 are linearly dependent on \mathbb{R} .

Example

Show that $f_1(x) = \cos(2x)$, $f_2(x) = 1$, $f_3(x) = \cos^2(x)$ are linearly dependent on \mathbb{R} .

Solution.

We know that

$$f_3(x) = \cos^2(x) = \frac{1 + \cos(2x)}{2} = \frac{1}{2} f_2(x) + \frac{1}{2} f_1(x),$$

for all $x \in \mathbb{R}$.

Mongi BLE

Existence Theorem and Fundamental Set of Solutions

Then there exist $c_1=c_2=\frac{1}{2}$ and $c_3=-1$ such that $c_1f_1(x)+c_2f_2(x)+c_3f_3(x)=0$ for all $x\in\mathbb{R}$.

So f_1 , f_2 , and f_3 are linearly dependent on \mathbb{R} .

Mongi BLE

Existence Theorem and Fundamental Set of Solutions

Example

Show that

$$f_1(x) = 1$$
, $f_2(x) = \sec^2(x)$ and $f_3(x) = \tan^2(x)$

are linearly dependent on $(0, \frac{\pi}{2})$.

Solution. We know that

$$f_2(x) = \sec^2(x) = 1 + \tan^2(x) = f_1(x) + f_3(x),$$

hence

$$f_1(x) - f_2(x) + f_3(x) = 0$$
 for all $x \in (0, \frac{\pi}{2})$.

Mongi BLE

Existence Theorem and Fundamental Set of Solutions

So there exist $c_1 = c_3 = 1$ and $c_2 = -1$ such that

$$c_1f_1(x) + c_2f_2(x) + c_3f_3(x) = 0$$
 for all $x \in \left(0, \frac{\pi}{2}\right)$.

So f_1 , f_2 and f_3 are linearly dependent on $x \in (0, \frac{\pi}{2})$.

Existence Theorem and Fundamental Set of Solutions

Definition (Linearly Independent Solutions)

Let f_1, f_2, \ldots, f_n be n functions defined on an interval I. The functions f_1, f_2, \ldots, f_n are said to be linearly independent on I if the equation

$$c_1 f_1(x) + c_2 f_2(x) + \ldots + c_n f_n(x) = 0$$
, for all $x \in I$.

is true only for $c_1 = c_2 = ... = c_n = 0$.

Mongi BLE

Existence
Theorem and
Fundamental
Set of
Solutions

Example

Show that $f_1(x) = x$ and $f_2(x) = x^2$ are linearly independent on I = [-1, 1].

Solution. Let $c_1, c_2 \in \mathbb{R}$ such that

$$c_1 f_1(x) + c_2 f_2(x) = 0$$
, for all $x \in I$.

We have to prove that $c_1 = c_2 = 0$. As

$$c_1 x + c_2 x^2 = 0$$
 for all $-1 \le x \le 1$,

then for x = 1 and $x = -\frac{1}{2}$ we have

$$c_1+c_2=0,$$

and

$$-\frac{1}{2}c_1+\frac{1}{4}c_2=0,$$

which implies that $c_1 = c_2 = 0$. Then f_1 , and f_2 are linearly independent on I.

Mongi BLE

Existence Theorem and Fundamental Set of Solutions

Example

Show that

$$f_1(x) = \sin(x) f_2(x) = \sin(2x),$$

are linearly independent on $I = [0, \pi)$.

Solution. Let $c_1, c_2 \in I$ such that

$$c_1 f_1(x) + c_2 f_2(x) = 0$$
 for all $x \in I$.

We have to show that $c_1 = c_2 = 0$. In fact for $x = \frac{\pi}{4}$, and $x = \frac{\pi}{3}$ we have

$$\begin{cases} c_1 \sin(\frac{\pi}{4}) + c_2 \sin(\frac{\pi}{2}) = 0, \\ c_1 \sin(\frac{\pi}{3}) + c_2 \sin(2\frac{\pi}{3}) = 0, \end{cases}$$

Mongi BLE

Existence Theorem and Fundamental Set of Solutions

hence

$$rac{1}{\sqrt{2}}c_1+c_2=0, \quad rac{\sqrt{3}}{2}c_1+\ rac{\sqrt{3}}{2}c_2=0,$$

which implies that $c_1 = c_2 = 0$. Then f_1 , and f_2 are linearly independent on I.

Example

Show that

$$f_1(x) = 1, f_2(x) = e^x$$
, and $f_3(x) = e^{-x}$.

are linearly independent on \mathbb{R} .

Solution.

Let $c_1, c_2, c_3 \in \mathbb{R}$ such that

$$c_1 f_1(x) + c_2 f_2(x) + c_3 f_3(x) = 0$$
, for all $x \in \mathbb{R}$.

We have to prove that $c_1 = c_2 = c_3 = 0$. In fact we have

$$c_1+c_2e^x+c_3e^{-x}=0, \ \text{ for all } x\in\mathbb{R},$$

then for the values x = 0, x = 1, x = -1, we have

$$\begin{cases} c_1 + c_2 + c_3 = 0 \\ c_{1+}c_2e + c_3e^{-1} = 0 \\ c_1 + c_2e^{-1} + c_3e = 0, \end{cases}$$

which implies that $c_1 = c_2 = c_3 = 0$. Then f_1 , f_2 and f_3 are linearly independent on \mathbb{R} .

Existence Theorem and Fundamental Set of Solutions Now we shall obtain a sufficient condition that n functions are linearly independent on an interval I. Let us assume that each of the functions f_1, f_2, \ldots, f_n is differentiable at least (n-1) times in the interval I. Let $c_1, c_2, \ldots, c_n \in \mathbb{R}$ such that

$$c_1 f_1(x) + c_2 f_2(x) + \ldots + c_n f_n(x) = 0$$
, for all $x \in I$.

Mongi BLE

Existence Theorem and Fundamental Set of Solutions We have

$$\begin{cases} c_1 f_1'(x) + c_2 f_2'(x) + \dots + c_n f_n'(x) = 0 \\ c_1 f_1''(x) + c_2 f_2''(x) + \dots + c_n f_n''(x) = 0 \\ \dots & \dots \\ c_1 f_1^{(n-1)}(x) + c_2 f_2^{(n-1)}(x) + \dots + c_n f_n^{(n-1)}(x) = 0, \end{cases}$$

for all $x \in I$. The nature of the solutions of these n linear equations in c_1, c_2, \ldots, c_n will be determined by the value of the determinant

$$W(x, f_1, f_2 ..., f_n) = \begin{vmatrix} f_1(x) & f_2(x) & \dots & f_n(x) \\ f'_1(x) & f'_2(x) & \dots & f'_n(x) \\ \vdots & \vdots & \ddots & \vdots \\ f_1^{(n-1)}(x) & f_2^{(n-1)}(x) & \dots & f_n^{(n-1)}(x) \end{vmatrix}$$

Mongi BLE

Existence Theorem and Fundamental Set of Solutions

Now if $x_0 \in I$ such that $W(x_0, f_1, f_2, ..., f_n) \neq 0$, then $c_1 = c_2 = ... = c_n = 0$, and hence the functions $f_1, f_2, ..., f_n$ are linearly independent on I.

Mongi BLE

Existence Theorem and Fundamental Set of Solutions

Definition

The function $W(x, f_1, f_2, ..., f_n)$ defined by the equation (29) is called Wronskian of the functions $f_1, f_2, ..., f_n$.

Mongi BLE

Existence Theorem and Fundamental Set of Solutions

Example

Show that $f_1(x) = 1$, $f_2(x) = x$, ..., $f_n(x) = x^{n-1}$ are linearly independent on \mathbb{R} .

Solution.

We calculate

$$W(x, f_1, f_2 \dots, f_n) = \begin{vmatrix} 1 & x & x^2 & \dots & x^{n-1} \\ 0 & 1 & 2x & \dots & (n-1)x^{n-2} \\ 0 & 0 & 2 & \dots & (n-1)(n-2)x^{n-3} \\ \dots & \dots & \dots & \dots \\ 0 & 0 & 0 & \dots & (n-1)! \end{vmatrix}$$

and we find $W(x, f_1, f_2, ..., f_n) = 0!1!2!...(n-1)! \neq 0$ for all $x \in \mathbb{R}$. Then $f_1, f_2, ..., f_n$ are linearly independent on \mathbb{R} .

Existence Theorem and Fundamental Set of Solutions

Example

Prove that $f_1(x) = x^2$, $f_2(x) = x^2 \ln(x)$ are linearly independent on $(0, \infty)$.

Solution.

We use the definition of

$$W(x, f_1, f_2) = \begin{vmatrix} x^2 & x^2 \ln(x) \\ 2x & 2x \ln(x) + x \end{vmatrix}$$

= $2x^3 \ln(x) + x^3 - 2x^3 \ln(x) = x^3 \neq 0$ for all $x \in \mathbb{R}$

then f_1 and f_2 are linearly independent on $(0, \infty)$.

Mongi BLE

Existence Theorem and Fundamental Set of Solutions

Example

Show that

$$f_1(x) = x^2 \text{ and } f_2(x) = x |x|,$$

are

- (i) linearly dependent on [0, 1]
- (ii) linearly independent on $[-1,\,1]$

Mongi BLE

Theorem and Fundamental Set of Solutions

Solution.

(i) on [0,1] we have

$$f_1(x) = f_2(x) = x^2,$$

hence

$$f_1(x) - f_2(x) = 0$$
, for all $0 \le x \le 1$.

So there exist $c_1 = 1$, $c_2 = -1$ such that

$$c_1 f_1(x) + c_2 f_2(x) = 0$$
, for all $0 \le x \le 1$.

Then f_1 and f_2 are linearly dependent on [0, 1]. (ii) Let $c_1, c_2 \in \mathbb{R}$ be such that

$$c_1 f_1(x) + c_2 f_2(x) = 0$$
, for all $-1 < x < 1$,

hence

$$c_1 x^2 + c_2 x |x| = 0$$
 for all $-1 < x < 1$.

Existence Theorem and Fundamental Set of Solutions Now for x = 1 and x = -1 we have $c_1 + c_2 = 0$ and $c_1 - c_2 = 0$ which implies that $c_1 = c_2 = 0$. Then f_1 and f_2 are linearly independent on [-1, 1].

Remark 1:

(i) If f_1, f_2, \ldots, f_n are linearly dependent on an interval I and each of the functions f_1, f_2, \ldots, f_n is differentiable at least (n-1) times on I, then

$$W(x, f_1, f_2, ..., f_n) = 0$$
, for all $x \in I$.

Existence Theorem and Fundamental Set of

Solutions

(ii) If $W(x, f_1, f_2, ..., f_n) = 0$ for all $x \in I$, then the functions

for all $x \in (0, \frac{\pi}{2})$.

 $W(x, f_1, f_2, f_3)$

For example, it was proved that

are linearly dependent on $(0, \frac{\pi}{2})$, then

 f_1, f_2, \ldots, f_n may be linearly independent or dependent on I.

 $f_1(x) = 1$, $f_2(x) = \sec^2(x)$, and $f_3(x) = \tan^2(x)$.

 $= \begin{vmatrix} 1 & \sec^2(x) & \tan^2(x) \\ 0 & 2\sec^2(x)\tan(x) & 2\tan(x)\sec^2(x) \\ 0 & 4\sec^2(x)\tan^2(x) + 2\sec^4(x) & 4\sec^2(x)\tan^2(x) + 2\sec^2(x) \\ \end{vmatrix}$

Mongi BLEI

Existence Theorem and Fundamental Set of Solutions

Example

We consider the functions

$$f_1(x) = x^2 \text{ and } f_2(x) = x |x|.$$

on the interval I = [-1, 1]. Prove that

$$W(x, f_1, f_2) = 0$$
, for all $x \in I$.

Existence Theorem and Fundamental Set of Solutions

Solution.

1 For $0 < x \le 1$, we have

$$W(x, f_1, f_2) = \begin{vmatrix} x^2 & x^2 \\ 2x & 2x \end{vmatrix} = 0.$$

$$W(x, f_1, f_2) = \begin{vmatrix} x^2 & -x^2 \\ 2x & -2x \end{vmatrix} = 0.$$

For x = 0 we have

$$W(0, f_1(0), f_2(0)) = \begin{vmatrix} f_1(0) & f_2(0) \\ f'_1(0) & f'_2(0) \end{vmatrix} = \begin{vmatrix} 0 & 0 \\ 0 & 0 \end{vmatrix} = 0.$$

Mongi BLE

Existence Theorem and Fundamental Set of Solutions

So $W(x, f_1, f_2) = 0$ for all $x \in [-1, 1]$, even these functions f_1 and f_2 are linearly independent on [-1, 1] (see the example (13)), where $f_2'(0) = 0$.

The main result in this section is given by the following theorem.

Theorem

If y_1, y_2, \ldots, y_n are solutions of the differential equation

$$a_n(x)y^{(n)} + a_{n-1}(x)y^{(n-1)} + \ldots + a_1(x)y' + a_0(x)y = 0,$$

where each $a_i(x)$ is defined and continuous on an interval I and $a_n(x) \neq 0$ for all $x \in I$, then y_1, y_2, \ldots, y_n are linearly independent on I if and only if

$$W(x, y_1 y_2, \dots, y_n) \neq 0$$
 for all $x \in I$.

Example

We know that the functions x and x^2 are linearly independent on the interval $-1 \le x \le 1$. However

$$W(x, f_1(x), f_2(x)) = \begin{vmatrix} x & x^2 \\ 1 & 2x \end{vmatrix} = x^2,$$

so that

$$W(0, f_1(0), f_2(0)) = 0$$
, where $x = 0 \in I = [-1, -1]$.

Existence Theorem and Fundamental Set of Solutions This fact does not contradict Theorem (22), because there is no second- order linear differential equation with the interval of definition $-1 \le x \le 1$ that has x and x^2 as solutions. We can verify that $y_1 = x$ and $y_2 = x^2$ are solutions of the second-order linear differential equation

$$x^2y'' - 2xy' + 2y = 0,$$

where the interval of definition I must exclude x=0, since we have assumed that $a_2(x)=x^2\neq 0$ in I. So that we conclude that the Theorem (4) is not contradicted by this example, and we should distinguish between the functions which are linearly independent on an interval I as algebraic functions, and the functions which are linearly independent on an interval I, and are solutions of a linear differential equation.

Example

It is easy to see that the functions

$$y_1 = x, \ y_2 = x^2,$$

and

$$y_3 = x^3$$
.

are solutions of the differential equation

$$x^3y''' - 3x^2y'' + 6xy' - 6y = 0.$$

Show that y_1 , y_2 and y_3 are linearly independent on $(0, \infty)$.

Solution.

Here we have $a_3(x) = x^3 \neq 0$ for all x > 0 or x < 0. By using the Wronskian we have

$$W(x, y_1, y_2, y_3) = \begin{vmatrix} x & x^2 & x^3 \\ 1 & 2x & 3x^2 \\ 0 & 2 & 6x \end{vmatrix} = 2x^3 \neq 0.$$

for all $x \in (0, \infty)$, or for all $x \in (-\infty, 0)$. So y_1 , y_2 and y_3 are linearly independent on $(0, \infty)$ or on $(-\infty, 0)$. But as algebraic functions y_1 , y_2 and y_3 are linearly independent on \mathbb{R} .

Mongi BLE

Existence Theorem and Fundamental Set of Solutions

Definition (Fundamental Set of Solutions)

Any set y_1, y_2, \ldots, y_n of n functions linearly independent solutions of the homogeneous linear nth-order differential equation (22) on an interval I is said to be a fundamental set of solutions on I.

Here the number of functions which form the fundamental set of solutions on i equals to the order of the equation (22).

Existence Theorem and Fundamental Set of Solutions

Theorem

Let y_1, y_2, \ldots, y_n be a fundamental set of solutions of the homogeneous linear nth-order differential equation (22) on an interval I. Then for any solution y of Eq (22) on I, there exist n constants $c_1, c_2, \ldots, c_n \in \mathbb{R}$, such that

$$y(x) = c_1y_1(x) + c_2y_2(x) + \ldots + c_ny_n(x).$$

Mongi BLE

Existence Theorem and Fundamental Set of Solutions

Theorem (Existence of a fundamental set)

There exist a fundamental set of solutions for homogeneous linear nth-order differential equation (22) on an interval I.

Mongi BLEI

Existence Theorem and Fundamental Set of Solutions

Definition (General Solution of the Homogeneous Equation)

Let y_1, y_2, \ldots, y_n be a fundamental set of solutions of homogeneous linear nth-order differential equation (22) on an interval I. The general solution of the equation (22) on I is defined by

$$y(x) = c_1 y_1(x) + c_2 y_2(x) + \ldots + c_n y_n(x), \quad x \in I,$$

where c_1, c_2, \ldots, c_n are arbitrary constants. The general solution of (22) is also called the complete solution of (22).

Mongi BLEL

Existence Theorem and Fundamental Set of Solutions

Example

Verify that $y_1 = e^{2x}$, and $y_2 = e^{-3x}$ form a fundamental set of solutions of the differential equation

$$y'' + y' - 6y = 0,$$

and find the general solution.

Solution.

Substituting

$$y_1 = e^{2x}, y_1' = 2e^{2x}, y_1'' = 4e^{2x},$$

in the differential equation, we get

$$4e^{2x} + 2e^{2x} - 6e^{2x} = 0.$$

Hence $y_1 = e^{2x}$, is a solution of the differential equation. By the same method we can prove that $y_2 = e^{-3x}$, is also a solution of the differential equation. We now have

$$W(x, e^{2x}, e^{-3x}) = \begin{vmatrix} e^{2x} & e^{-3x} \\ 2e^{2x} & -3e^{-3x} \end{vmatrix} = -5e^{-x} \neq 0 \text{ for all } x \in \mathbb{R}.$$

Then y_1 and y_2 are linearly independent on \mathbb{R} . From Theorem (??), we deduce the general solution of the differential equation is given by

$$y(x) = c_1 y_1(x) + c_2 y_2(x).$$

where $c_1, c_2 \in \mathbb{R}$.

Mongi BLEI

Existence Theorem and Fundamental Set of Solutions

Example

It is easy to see that the functions

$$y_1 = e^x$$
, $y_2 = e^{2x}$, and $y_3 = e^{3x}$,

are solutions of the differential equation

$$y''' - 6y'' + 11y' - 6y = 0.$$

Find the general solution of the differential equation.

Solution.

Since

$$W(x, e^{x}, e^{2x}, e^{3x}) = \begin{vmatrix} e^{x} & e^{2x} & e^{3x} \\ e^{x} & 2e^{2x} & 3e^{3x} \\ e^{x} & 4e^{2x} & 9e^{3x} \end{vmatrix} = 2e^{6x} \neq 0,$$

for all $x \in \mathbb{R}$

Mongi BLE

Existence Theorem and Fundamental Set of Solutions

We deduce that

$$y_c = c_1 e^x + c_2 e^{2x} + c_3 e^{3x}.$$

is the general solution of the differential equation.

Mongi BLE

Existence Theorem and Fundamental Set of Solutions

Example

Prove that

$$y_1 = x^3 e^x$$
, and $y_2 = e^x$,

are solutions of the differential equation

$$xy'' - 2(x+1)y' + (x+2)y = 0,$$

where x > 0. Find also the general solution of the differential equation.

Solution.

Substituting

$$y_1=x^3e^x,\ y_1'=3x^2e^x+x^3e^x,\ y_1''=6xe^x+6x^2e^x+x^3e^x,$$
 in the differential equation we obtain

Mongi BLEL

Existence Theorem and Fundamental Set of Solutions

$$W(x, x^3 e^x, e^x) = \begin{vmatrix} x^3 e^x & e^x \\ 3x^2 e^x + x^3 e^x & e^x \end{vmatrix} = -3x^2 e^x \neq 0$$
, for all $x = 0$

Then

$$y_1 = x^3 e^x$$
,

and

$$y_2=e^x$$
.

are linearly independent on $(0, \infty)$, and we conclude that

$$y_c = c_1 x^3 e^x + c_2 e^x,$$

is the general solution of the differential equation.

Mongi BLE

Existence Theorem and Fundamental Set of Solutions

Remark 2:

The property of general solution exists only in the homogeneous linear nth -order differential equation (22) but does not exist in the homogeneous non- linear differential equation, for example the differential equation

$$(xy'+1)(yy'+1)=0.$$

is a non-linear first order differential equation has not general solution, because it has two family of curves of solutions $y=-\ln|xc_1|$ such that $x\neq 0$, and an arbitrary constant $c_1\neq 0$, $y^2+2x=c_2$ where $y\neq 0$ and c_2 is an arbitrary constant.

Mongi BLEI

Existence Theorem and Fundamental Set of Solutions

Example

Given that

$$y = c_1 e^x + c_2 e^{-x},$$

is a two parameters family of solutions of

$$y''-y=0 \text{ on } (-\infty,\infty),$$

find a curve of the family satisfying the initial conditions y(0) = 0, y'(0) = 1.

Mongi BLE

Existence Theorem and Fundamental Set of Solutions

Solution.

From Theorem (4) the initial value problem

$$\begin{cases} y''(x) - y(x) = 0 \\ y(0) = 0 \ y'(0) = 1, \end{cases}$$

has a unique solution.

Existence Theorem and Fundamental Set of Solutions For y(0)=0 we have $c_1+c_2=0$ and for y'(0)=1 we have $c_1-c_2=1$, hence $c_1=\frac{1}{2}$ and $c_2=-\frac{1}{2}$. So the unique solution of the initial value problem is

$$y = \frac{1}{2}(e^x - e^{-x}) = \sinh(x).$$