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Definition
The general linear differential equation of order n is an
equation that can be written

dny dn—ly dy _
an(x) = + an_l(x)W +...+ al(x)a + ao(x)y = R(x),
where R and the coefficients a;, a» , ..., a, are functions of x

defined on an interval /. The equation (1) is called a
homogeneous linear differential equation if the function R(x) is
zero for all x € I. Suppose that the coefficients a1, a2 ,...,an
and the function R are continuous on an interval / such that
an(x) is never zero on /, then the equation (1) is said to be
normal on /. If R is not equal to zero on /, the equation (1) is
called non - homogeneous linear differential equation.
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4 d2
xistence y 2 . .
Theorem and e + w?y =0 (undamped free vibration ).
Set of
Solutions
d*q dg 1 o
LF + RE + 9= Egcos(wt)  ( LRC — circuit).

x?y" +xy' + N2y =0 ( Bessel differential equation ).
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homogeneous equation

, Yk are solutions of the

Existence
Theorem and
Fundamental
Set of

Solutions an(X)y(n) + an—l(X)y(n_l) 4+ ...+ al(X)yI —+ BO(X))/ = 0’
then for all for all c1,¢,...,c in R
y=ayr+y»+ ...+ cyk,

is also a solution of (6).
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So we have the following theorem

Existence
Theorem and
Fundamental
Set of
Solutions

Theorem (Linear combination)

Any linear combination of solutions of a homogeneous linear
differential equation is also a solution.

Now we give the existence and uniqueness theorem for an initial
value problem (/VP) for nth-order linear differential equation.
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Theorem (Existence Theorem)

Given an nth-order linear differential equation
an(X)y™ + a, 1)y 4+ 4 a1 (x)y’ 4 ao(x)y = R(x).

that is normal on an interval |. Suppose xo € | and

Y0, Y1, ---,Yn—1 are n arbitrary real numbers. Then there exists
a unique solution y = y(x) of (4)

satisfying the initial conditions

y(x0) =0, Y'(x0) =y, .y VD (x0) = yn_1.
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Example

Discuss the existence of unique solution of (/VP)

{ (x2 4+ 1)y” + x?y’ + 5y = cos(x)
y@)=2 y'(3)=L

Solution.
The functions

ar(x) = x> + 1, a1(x) = x?,a0(x) = 5,
and
R(x) = cos(x).

are continuous on | = R = (—o00, +00), and ax(x) # 0 for all
x € R, the point xp = 3 € I. Then Theorem (4) assures that
the IVP has a unique solution on R.
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Existence
Theorem and

Fundamental 2. ! / 2 _
‘ Xy'+ By + zy =0,

Set of

Solutions y(l) — 0, y/(]_) = 1

has a unique solution around xp = 1.

Solution. The function ax(x) = x2, is continuous on R and
a(x)#0if x>00rx<0. Butxp=1€ h =(0,00). The

function a1(x) = —Z=, is continuous on /> = (—oc, 2) and the

function
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Existence

Theorem and

undamenta ao\X) = —=
i
Sellwitens has a unique solution on 1 N/, = (0, 2) = /. We can take any
interval /3 C (0, 2) such that xop =1 € /5. So | is that the
largest interval for which the (/VP) has a unique solution.

, is continuous on /; = (0, co ). Then the (/VP)
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Existence { (X - 1)(X — S)y// + Xy/ + y = X27
y2) =1, y'(2)=0.

has a unique solution about xg = 2.

Theorem and
Fundamental
Set of
Solutions

Solution.
The functions

a(x) = (x —1)(x — 3) a1(x) = xao(x) =1R(x) = X,

are continuous on R. But ax(x) # 0 if x € (=00, 1) or x € (1,
3) or x € (3, 00). As xp = 2 so we take | = (1, 3). Then the
IVP has a unique solution on | = (1, 3)
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Existence EXa m ple

Theorem and

ausagl From Theorem (4), we deduce that the /VP

Set of
Solutions

3y/I/ + 5y/I _ y/ _|_ 7y — O,
y(1)=0, y'(1)=0, y"(1)=0.

has a unique solution y =0 on R.
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Definition (Linearly Dependent Solutions)

Let f1, f, ..., f, be n functions defined on an interval /.
The functions f1, f», ..., f, are said to be linearly dependent
on | if there exist n constants ¢j, ¢, ..., ¢, not all zero (

ie. (c1, @, ..., cn )#(0,0,...,0) ) such that

af(x)+ ah(x)+...+cafp(x) =0 forall xel.
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Existence f]-(X) = X7 f2(X) - eX, fé(X) — XeX,
Theorem and

SN and

Solutions ﬁ‘(X) _ (2 _ 3X)eX,

are linearly dependent on R.

Solution.
fa(x) = (2 — 3x)e™ = 2" — 3xe* = 2f(x) — 3f(x) + 0f1(x),
hence

0fi(x) + 2fh(x) — 3f3(x) — fa(x) =0, forall x € R.
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Existence

Th d H

Fundamenta So there exist c; =0, co =2, c3 = —3, and ¢; = —1 such that
Set of
Solutions

afi(x) + af(x) + c3f3(x) + cafa(x) =0, for all x € R.

Then f1, f, f3 and f4 are linearly dependent on R.
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St Show that f1(x) = cos(2x), f(x) =1, f(x) = cos?(x) are

Theorem and
Fundamental linearly dependent on R.
Solutions

Solution.
We know that

1+ cos(2x)

1 1
T =5 B0+ 5 A

(x) = cos?(x) =

for all x € R.
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Existence
Theorem and
Fundamental
Set of
Solutions

Then there exist ¢c; = ¢ = % and ¢z = —1 such that
c1fi(x)+ ah(x)+ afz(x) =0  forall x € R,

So fi, f, and f3 are linearly dependent on R.
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Example

Show that
fi(x) =1, f(x) = sec?(x) and f3(x) = tan?(x)
are linearly dependent on (0, g)
Solution. We know that
fr(x) = sec?(x) = 1+ tan?(x) = fi(x) + f(x),
hence

A(x) — f(x)+ f(x)=0 forall x € (o, g)
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Existence .

Theorem and So there exist c; = c3 =1 and ¢ = —1 such that
Fundamental

Set of

Solutions lel(X) + C2f2(X) + C3fé(X) =0 fOI’ a|| X € (0, g) .

™

So fi, f and f3 are linearly dependent on x € (O, 5).
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Definition (Linearly Independent Solutions)

Let f1, f, ..., f, be n functions defined on an interval /. The
functions f1, 5, ..., f, are said to be linearly independent on /

if the equation
cifi(x) + ch(x)+ ...+ cnfa(x) =0, forall xel.

is trueonly forci = =... =c, =0.
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Example

Exist:
T>P<1lesoe|:;1 : and 2 . -
Fundamenta Show that fi(x) = x and fa(x) = x* are linearly independent
et of

Solutions on I = [—1, ].]

Solution. Let ¢, ¢ € R such that

c1fi(x) + cafa(x) =0, forall x € /.
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C1X+C2X2 =0 forall —1<x<1,
Existence
Theorem and

qundamental then for x =1 and x = —% we have
Solutions
ato= 07
and
1 n 1 0
—=C —C =
2 4 ’

which implies that ¢; = ¢ = 0. Then fi, and £, are linearly
independent on /.
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Example

Show that
fi(x) = sin(x) f2(x) = sin(2x),

are linearly independent on [/ = [0, 7).
Solution. Let ¢, ¢ € I such that
c1fi(x) + cfa(x) =0 forall x € 1.

We have to show that ¢; = c; = 0. In fact for x = 7, and
X = % we have

csin(7) + c2sin(3) =0,
asin(3) + c2sin(23) =0,
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Existence

Theorem and hence

Fundamental 1 3 3
g:ltuirons ECI + ¢ = O’ £ c + £C2 — 0

2

which implies that ¢; = ¢ = 0. Then f;, and £, are linearly
independent on /.
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Show that

Existence
Theorem and

Serof A(x) =1,H(x) =€, and f(x) =e %

Solutions

are linearly independent on R.

Solution.
Let ¢1, ¢, c3 € R such that

c1fi(x) + ef(x) + afz(x) =0, forall xeR.
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Existence 1+ e’ + e =0, forall xeR,
Theorem and
Fundamental
oo then for the values x =0, x =1, x = —1, we have
olutions

aa+o+ca=0

e+ e =0
a+oe l+ae=0,

which implies that ¢ = =c¢3 =0. Then £, , and f3
are linearly independent on R.
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Bz Now we shall obtain a sufficient condition that n functions are

Theorem and

Fundamental linearly independent on an interval /. Let us assume that each
Selusors of the functions fi, f>, ..., f, is differentiable at least (n — 1)

times in the interval /. Let ¢, ¢, ..., ¢, € R such that

afi(x) + cfa(x) 4+ ...+ cafa(x) =0, forall x € 1.
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Higher Order

lell(X) + C2f2’(X) +...tefi(x)=0
afl'(x)+ efy (x)+ ...+ cnf)/(x) =0
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Existence

Theorem and

Fundamental (n—-1) (n—1) (n=1)y _
Setof aff’ “(x)+af” )+t U(x) =0,
Solutions

for all x € I. The nature of the solutions of these n linear
equations in ¢j, ¢, ..., ¢, will be determined by the value of
the determinant

fl/(x) fz/(X) f,;(x)
Wi ffy o £y =] 16 B ()

") £V L ()
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Existence
Theorem and
Fundamental

e Now if xo € I such that W(xp, f1, f2, ..

Solutions

., fn) #0, then
1 =¢C =...=cp=0, and hence the functions f, f», ..., f,
are linearly independent on /.
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Existence

Theorem and

gt
eltions The function W(x, fi, fa,. .., f,) defined by the equation (29)

is called Wronskian of the functions fi, f, ..., f,.
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s Show that fi(x) =1, fh(x)=x, ,...
linearly independent on R.

Existence

Theorem and .
Fundamental Solut|0n_
Set of

Solutions We calculate
1 x  x? xn—1
0 1 2x (n—1)x"2
W(X7 ﬂafé'--)fn): 0 0 2 (n—l)(n—2)x” 3
0 0 0 ... (n— 1)

and we find W(x, fi, f, ..., f,) =0!1121...(n — 1)! # 0 for
all x ¢ R. Then f1, f, ..., f, are linearly independent on R.
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Prove that fi(x) = x2, f(x) = x?In(x) are linearly
Existence .
O independent on (0, o).
Fundamental
Set of .
Solutions Solution.

We use the definition of

x2  x%In(x)
2x  2xIn(x) + x
= 2x3In(x) + x3 = 2x3In(x) = x> £ 0 for all x € |

W(x, fi,h) =

then f; and £, are linearly independent on (0, c0).
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Example

Existence
Theorem and

Fundamental ShOW that
Set of

Solutions f]_(X) = xzand f2(X) =X ’Xl 5
are

(1) linearly dependent on [0, 1]

(ii) linearly independent on [—1, 1]
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Solution.
(1) on [0,1] we have

hence
fi(x) — f(x) =0, forall 0 <x<1.

So there exist ¢ = 1, ¢ = —1 such that
cafi(x)+ ah(x) =0, forall 0 <x<1.

Then f; and £, are linearly dependent on [0, 1].
(i) Let c1, ¢ € R be such that

cifi(x) + ah(x) =0, forall —1<x<1,

hence
c1x2+c2x|x|:0forall—1§x§1.
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Existence c1 — c2 =0 which implies that ¢; = ¢ = 0. Then f; and £
Theorem and are linearly independent on [—1,1].

Fundamental

Selusors Remark 1 :
(i) If f1, fa, ..., fy are linearly dependent on an interval / and
each of the functions f1, f,..., f, is differentiable at least

(n—1) times on /, then

W(valafé7--~,fn) :0, for all X € /.
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Existence
Theorem and
Fundamental
Set of
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For example, it was proved that
fi(x) =1, f(x) = sec?(x), and fz3(x) = tan?(x).

are linearly dependent on (O, 2) then

W(x, f, f2, )

1 sec2(x) tan?(x)
= 1|0 2sec ( ) tan(x) 2tan(x) sec?(x)

0 4sec?(x)tan?(x) + 2sec*(x) 4sec?(x)tan?(x) + 2sec
= 0,

for all x € (0, g) .
(i) If W(x, f, f, ..., f,) =0 for all x € I, then the functions
fi, f2, ..., f, may be linearly independent or dependent on /.
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Existence . -
Theorem and We consider the functions
Fundamental

Set of

Solutions fi(X) — X2 and f2(X) = x ’X’ .
on the interval /| = [—1, 1]. Prove that

W(x, fi,f) =0, forall xel.



Solution.
For 0 < x <1, we have

2 2
W(x, fi,f) = ;X ;X = 0.
For —1 < x < 0, we have
2 2
W(x, fi,f) = ;X _;X =0.
For x =0 we have
f(0)  £(0
W (0, /1(0), (0)) = =
( 1() 2( )) ’ fll(o) f2/(0)




Linear

Differential
Equations of
Higher Order

Mongi BLEL

Existence
Theorem and

qundamental So W(x, fi, ) =0 for all x € [-1, 1], even these functions f;
Solutions and f, are linearly independent on [—1, 1] (see the example
(13) ), where £,(0) = 0.
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Theorem

Existence
Theorem and

e E If y1,¥2, ..., ¥n are solutions of the differential equation

Set of
Solutions

a,,(x)y(") + a,,_l(x)y("_l) + ...+ a1(x)y’ + ao(x)y =0,

where each aj(x) is defined and continuous on an interval | and
an(x) #0 for all x € I, then yi,y», ..., yn are linearly
independent on | if and only if

W(x, yiya,...,yn) 0 forall x € I.
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Example

We know that the functions x and x? are linearly independent
on the interval —1 < x < 1. However

W(x, Alx), f(x)) = \ x
so that

W(0, f(0),% (0)) =0, where x=0¢ [ =[-1,—1].
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This fact does not contradict Theorem (22), because there is
no second- order linear differential equation with the interval of
definition —1 < x < 1 that has x and x? as solutions. We can
verify that y; = x and y» = x? are solutions of the second-
order linear differential equation

x2y" —2xy’ + 2y =0,

where the interval of definition / must exclude x = 0, since we
have assumed that ap(x) = x2 # 0 in /. So that we conclude
that the Theorem (4) is not contradicted by this example, and
we should distinguish between the functions which are linearly
independent on an interval / as algebraic functions, and the
functions which are linearly independent on an interval /, and
are solutions of a linear differential equation.
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It is easy to see that the functions

Existence
Theorem and 2
Fundamental yi=Xx, y2 =x,
Set of
Solutions
and

3

¥z =x>.
are solutions of the differential equation

x3y" —3x%y" 4+ 6xy’ — 6y = 0.

Show that y1, y» and y3 are linearly independent on (0, o).
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Here we have a3(x) = x3 # 0 for all x >0 or x < 0. By using

Existence .

T e the Wronskian we have

Fundamental
Set of 2 3

Solutions X X X

W(x, y1,y0, y3) = | 1 2x 3x% | =2x3#0.
0 2 6x

for all x € (0, 00), or for all x € (—o0, 0). So y1, y» and y3 are
linearly independent on (0, co) or on (—oo, 0). But as
algebraic functions y1, y» and y3 are linearly independent on R.
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Definition (Fundamental Set of Solutions)

Any set y1, V2, ..., ¥n of n functions linearly independent
solutions of the homogeneous linear nth-order differential
equation (22) on an interval | is said to be a fundamental set
of solutions on /.

Here the number of functions which form the fundamental set
of solutions on i equals to the order of the equation (22).



Linear
Differential
Equations of
Higher Order

Mongi BLEL

Existence
Theorem and
Fundamental
Set of
Solutions

Theorem

Let y1, yo, ..., ¥n be a fundamental set of solutions of the
homogeneous linear nth-order differential equation (22) on an
interval I. Then for any solution y of Eq (22) on I, there exist
n constants ci, ¢,. ...,c, € R, such that

y(x) = ayi(x) + c2y2(x) + . .. + caya(x).
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Theorem (Existence of a fundamental set)

There exist a fundamental set of solutions for homogeneous
linear nth-order differential equation (22) on an interval |.
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Definition (General Solution of the Homogeneous Equation)

Let y1,y,...,yn be a fundamental set of solutions of
homogeneous linear nth-order differential equation (22) on an
interval /. The general solution of the equation (22) on / is
defined by

y(x) = ayi(x) + caya(x) + ... + cayn(x), x €1,

where c1,0,. .., ¢, are arbitrary constants. The general
solution of (22) is also called the complete solution of (22).
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Mo BLEL solutions of the dlfferent|al equation

Example

=3 form a fundamental set of

Existence

7 /
Theorem and — =
Fundamental y + y 6'y 07
Set of
Solutions

and find the general solution.

Solution.
Substituting

= e2x’y]/. — 262X, " 4e2x
in the differential equation, we get

4e® 4+ 2% — 62X = 0.
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Differential

Eﬁgjf:j"gfd‘fr Hence y; = e, is a solution of the differential equation. By
the same method we can prove that y» = e =3, is also a
solution of the differential equation. We now have

2x
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Existence
Theorem and 2% _3x
Fundamental e e
2x . —3x\ _
SEBci W(X7 e ,e ) - ‘ 262X _3ef3x

Solutions

= —5e ¥ #0 for all x € R.

Then y; and y», are linearly independent on R. From Theorem
(??), we deduce the general solution of the differential

equation is given by

y(x) = ayi(x) + cya(x).

where ¢1, o € R.
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Higher Order It is easy to see that the functions

1 i BLEL
X 2x

yir=¢€, )y2=¢€ aandy3:e3xu

Existence
Theorem and

qundemental are solutions of the differential equation
Solutions

yl// _ 6yl/ ‘I’ 11_)/, _ 6y _ 0
Find the general solution of the differential equation.

Solution.

Since
2x 3x

W(x,e*, e, e¥) =| e 2> 3e3* | =2e% #£0,
e 4e> 93

far All v ¢ TR
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Existence

JIheorem and We deduce that
undamental
Set of
Solutions
Ve = c1€* + e + 3.

is the general solution of the differential equation.
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Existence
Theorem and
Fundamental
Set of
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Example

Prove that

y1 =x3€%, and y» = €,

are solutions of the differential equation

xy” =2(x+ 1)y’ + (x+2)y =0,
where x > 0. Find also the general solution of the differential
equation.

Solution.
Substituting

= x3e*, v = 3x%eX + x3e%, yy = 6xe* + 6x2e* + x3e*,

in the differential equation we obtain



Linear
Differential
Equations of
Higher Order
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3x2eX + x3eX X
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W(x,x3ex, e¥) = = —3x%eX £0, for all x

Existence
Theorem and

Fundamental
Set of Then
Solutions }/1 — X3eX,
and
X
Yo = €.

are linearly independent on (0, o), and we conclude that
Ve = ax3e* + oe”,

is the general solution of the differential equation.
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GRS Remark 2 :

R The property of general solution exists only in the

Bz homogeneous linear nth -order differential equation (22) but

poecrem and does not exist in the homogeneous non- linear differential
equation, for example the differential equation

Set of
Solutions

(xv'+1)(yy' +1)=0.

is a non-linear first order differential equation has not general
solution, because it has two family of curves of solutions

y = —In|xc1| such that x # 0, and an arbitrary constant
c1 #0, y? +2x = ¢ where y # 0 and ¢, is an arbitrary
constant.
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Existence
Theorem and
Fundamental
Set of
Solutions

Example

Given that

y =ce’+ e,

is a two parameters family of solutions of
y" —y =0 on (—00,00),

find a curve of the family satisfying the initial conditions
y(0) =0, y'(0) =1.
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Existence Solution.
Theorem and

e From Theorem (4) the initial value problem

Set of
Solutions
{ y'(x) = y(x)=0
y(0) =0 y'(0) =1,

has a unique solution.
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GOl For y(0) = 0 we have ¢; + ¢ = 0 and for y’(0) = 1 we have
eorem an . -
Fundamental c1— ¢ =1, hence ¢ :% and ¢ = —%. So the unique solution
Set of el .

Solutions of the initial value problem is

y = %(ex — e ) = sinh(x).
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