Linear Differential Equations of Higher Order

Mongi BLEL

Department of Mathematics King Saud University

January 11, 2024

Table of contents

1 Existence Theorem and Fundamental Set of Solutions

Existence Theorem and Fundamental Set of Solutions

Definition

The general linear differential equation of order n is an equation that can be written

$$a_n(x)rac{d^n y}{dx^n} + a_{n-1}(x)rac{d^{n-1} y}{dx^{n-1}} + \ldots + a_1(x)rac{dy}{dx} + a_0(x)y = R(x), \ (1)$$

where R and the coefficients a_1, a_2, \ldots, a_n are functions of x defined on an interval I. The equation (1) is called a homogeneous linear differential equation if the function R(x) is zero for all $x \in I$. Suppose that the coefficients a_1, a_2, \ldots, a_n and the function R are continuous on an interval I such that $a_n(x)$ is never zero on I, then the equation (1) is said to be normal on I. If R is not equal to zero on I, the equation (1) is called non - homogeneous linear differential equation.

$$\begin{aligned} &\frac{d^2y}{dt^2} + w^2y = 0 \quad (\text{undamped free vibration }). \\ &L\frac{d^2q}{dt^2} + R\frac{dq}{dt} + \frac{1}{c}q = E_0\cos(wt) \quad (\ LRC - \text{circuit}). \\ &x^2y'' + xy' + \lambda^2y = 0 \quad (\text{ Bessel differential equation }). \end{aligned}$$

Now we suppose that y_1, y_2, \ldots, y_k are solutions of the homogeneous equation

$$a_n(x)y^{(n)} + a_{n-1}(x)y^{(n-1)} + \ldots + a_1(x)y' + a_0(x)y = 0,$$
 (2)

then for all for all c_1, c_2, \ldots, c_k in \mathbb{R}

$$y=c_1y_1+c_2y_2+\ldots+c_ky_k,$$

is also a solution of (2).

So we have the following theorem

Theorem (Linear combination)

Any linear combination of solutions of a homogeneous linear differential equation is also a solution.

Now we give the existence and uniqueness theorem for an initial value problem (IVP) for nth-order linear differential equation.

Theorem (Existence Theorem)

Given an nth-order linear differential equation

$$a_n(x)y^{(n)} + a_{n-1}(x)y^{(n-1)} + \ldots + a_1(x)y' + a_0(x)y = R(x).$$
 (3)

that is normal on an interval I. Suppose $x_0 \in I$ and $y_0, y_1, \ldots, y_{n-1}$ are n arbitrary real numbers. Then there exists a unique solution y = y(x) of (3) satisfying the initial conditions

$$y(x_0) = y_0, y'(x_0) = y_1, \dots, y^{(n-1)}(x_0) = y_{n-1}.$$
 (4)

Discuss the existence of unique solution of (IVP)

$$\begin{cases} (x^2+1)y''+x^2y'+5y=\cos(x)\\ y(3)=2, \quad y'(3)=1. \end{cases}$$

Solution.

The functions

$$a_2(x) = x^2 + 1, a_1(x) = x^2, a_0(x) = 5,$$

and

$$R(x)=\cos(x).$$

are continuous on $I = \mathbb{R} = (-\infty, +\infty)$, and $a_2(x) \neq 0$ for all $x \in \mathbb{R}$, the point $x_0 = 3 \in I$. Then Theorem (4) assures that the *IVP* has a unique solution on \mathbb{R} .

Find an interval I for which the initial values problem (IVP)

$$\begin{cases} x^2 y'' + \frac{x}{\sqrt{2-x}} y' + \frac{2}{\sqrt{x}} y = 0, \\ y(1) = 0, \quad y'(1) = 1. \end{cases}$$

has a unique solution around $x_0 = 1$.

Solution. The function $a_2(x) = x^2$, is continuous on \mathbb{R} and $a_2(x) \neq 0$ if x > 0 or x < 0. But $x_0 = 1 \in I_1 = (0, \infty)$. The function $a_1(x) = \frac{x}{\sqrt{2-x}}$, is continuous on $I_2 = (-\infty, 2)$ and the function

.

 $a_0(x) = \frac{2}{\sqrt{x}}$, is continuous on $I_1 = (0, \infty)$. Then the (*IVP*) has a unique solution on $I_1 \cap I_2 = (0, 2) = I$. We can take any interval $I_3 \subset (0, 2)$ such that $x_0 = 1 \in I_3$. So I is that the largest interval for which the (*IVP*) has a unique solution.

Find an interval I for which the IVP

$$\begin{cases} (x-1)(x-3)y'' + xy' + y = x^2, \\ y(2) = 1, \quad y'(2) = 0. \end{cases}$$

has a unique solution about $x_0 = 2$.

Solution.

The functions

$$a_2(x) = (x-1)(x-3)$$
 $a_1(x) = x a_0(x) = 1 R(x) = x^2$

are continuous on \mathbb{R} . But $a_2(x) \neq 0$ if $x \in (-\infty, 1)$ or $x \in (1, 3)$ or $x \in (3, \infty)$. As $x_0 = 2$ so we take I = (1, 3). Then the *IVP* has a unique solution on I = (1, 3)

From Theorem (4), we deduce that the *IVP*

$$\begin{cases} 3y''' + 5y'' - y' + 7y = 0, \\ y(1) = 0, \ y'(1) = 0, \ y''(1) = 0 \end{cases}$$

has a unique solution y = 0 on \mathbb{R} .

Definition (Linearly Dependent Solutions)

Let f_1, f_2, \ldots, f_n be *n* functions defined on an interval *I*. The functions f_1, f_2, \ldots, f_n are said to be linearly dependent on *I* if there exist *n* constants c_1, c_2, \ldots, c_n not all zero (i.e. $(c_1, c_2, \ldots, c_n) \neq (0, 0, \ldots, 0)$) such that

 $c_1f_1(x) + c_2f_2(x) + \ldots + c_nf_n(x) = 0$ for all $x \in I$.

Prove that the functions

$$f_1(x) = x, \ f_2(x) = e^x, \ f_3(x) = xe^x,$$

and

$$f_4(x)=(2-3x)e^x,$$

are linearly dependent on \mathbb{R} .

Solution.

$$f_4(x) = (2 - 3x)e^x = 2e^x - 3xe^x = 2f_2(x) - 3f_3(x) + 0f_1(x),$$

hence

$$0f_1(x) + 2f_2(x) - 3f_3(x) - f_4(x) = 0$$
, for all $x \in \mathbb{R}$.

So there exist $c_1 = 0$, $c_2 = 2$, $c_3 = -3$, and $c_4 = -1$ such that $c_1 f_1(x) + c_2 f_2(x) + c_3 f_3(x) + c_4 f_4(x) = 0$, for all $x \in \mathbb{R}$. Then f_1 , f_2 , f_3 and f_4 are linearly dependent on \mathbb{R} .

Show that
$$f_1(x) = \cos(2x)$$
, $f_2(x) = 1$, $f_3(x) = \cos^2(x)$ are linearly dependent on \mathbb{R} .

Solution.

We know that

$$f_3(x) = \cos^2(x) = \frac{1 + \cos(2x)}{2} = \frac{1}{2} f_2(x) + \frac{1}{2} f_1(x),$$

for all $x \in \mathbb{R}$.

Then there exist
$$c_1=c_2=rac{1}{2}$$
 and $c_3=-1$ such that $c_1f_1(x)+c_2f_2(x)+c_3f_3(x)=0$ for all $x\in\mathbb{R}$.

So f_1 , f_2 , and f_3 are linearly dependent on \mathbb{R} .

Show that

$$f_1(x) = 1, \,\, f_2(x) = \sec^2(x) \,\, {
m and} \,\,\, f_3(x) = an^2(x)$$

are linearly dependent on $(0, \frac{\pi}{2})$.

Solution. We know that

$$f_2(x) = \sec^2(x) = 1 + \tan^2(x) = f_1(x) + f_3(x),$$

hence

$$f_1(x) - f_2(x) + f_3(x) = 0$$
 for all $x \in \left(0, \frac{\pi}{2}\right)$.

So there exist $c_1 = c_3 = 1$ and $c_2 = -1$ such that

$$c_1 f_1(x) + c_2 f_2(x) + c_3 f_3(x) = 0$$
 for all $x \in \left(0, \frac{\pi}{2}\right)$.

So f_1 , f_2 and f_3 are linearly dependent on $x \in (0, \frac{\pi}{2})$.

Definition (Linearly Independent Solutions)

Let f_1, f_2, \ldots, f_n be n functions defined on an interval *I*. The functions f_1, f_2, \ldots, f_n are said to be linearly independent on *I* if the equation

$$c_1 f_1(x) + c_2 f_2(x) + \ldots + c_n f_n(x) = 0$$
, for all $x \in I$.

is true only for $c_1 = c_2 = ... = c_n = 0$.

Show that $f_1(x) = x$ and $f_2(x) = x^2$ are linearly independent on I = [-1, 1].

Solution. Let $c_1, c_2 \in \mathbb{R}$ such that

$$c_1 f_1(x) + c_2 f_2(x) = 0$$
, for all $x \in I$.

We have to prove that $c_1 = c_2 = 0$. As

$$c_1 x + c_2 x^2 = 0$$
 for all $-1 \le x \le 1$,

then for x = 1 and $x = -\frac{1}{2}$ we have

$$c_1+c_2=0,$$

and

$$-\frac{1}{2}c_1+\frac{1}{4}c_2=0,$$

which implies that $c_1 = c_2 = 0$. Then f_1 , and f_2 are linearly independent on I.

Show that

$$f_1(x)=\sin(x)\,f_2(x)=\sin(2x),$$

are linearly independent on $I = [0, \pi)$.

Solution. Let c_1 , $c_2 \in I$ such that

$$c_1 f_1(x) + c_2 f_2(x) = 0$$
 for all $x \in I$.

We have to show that $c_1 = c_2 = 0$. In fact for $x = \frac{\pi}{4}$, and $x = \frac{\pi}{3}$ we have

$$\begin{cases} c_1 \sin(\frac{\pi}{4}) + c_2 \sin(\frac{\pi}{2}) = 0, \\ c_1 \sin(\frac{\pi}{3}) + c_2 \sin(2\frac{\pi}{3}) = 0, \end{cases}$$

hence

$$rac{1}{\sqrt{2}}c_1+c_2=0, \quad rac{\sqrt{3}}{2}c_1+\ rac{\sqrt{3}}{2}c_2=0,$$

which implies that $c_1 = c_2 = 0$. Then f_1 , and f_2 are linearly independent on I.

Show that

$$f_1(x) = 1, f_2(x) = e^x$$
, and $f_3(x) = e^{-x}$.

are linearly independent on \mathbb{R} .

Solution.

Let c_1 , c_2 , $c_3 \in \mathbb{R}$ such that

$$c_1f_1(x)+c_2f_2(x)+c_3f_3(x)=0, \hspace{0.2cm} ext{for all} \hspace{0.2cm} x\in\mathbb{R}.$$

We have to prove that $c_1 = c_2 = c_3 = 0$. In fact we have

$$c_1+c_2e^x+c_3e^{-x}=0, \ \ \text{for all} \ x\in\mathbb{R},$$

then for the values x = 0, x = 1, x = -1, we have

$$\left\{ \begin{array}{l} c_1+c_2+c_3=0\\ c_{1+}c_2e+c_3e^{-1}=0\\ c_1+c_2e^{-1}+c_3e=0, \end{array} \right.$$

which implies that $c_1 = c_2 = c_3 = 0$. Then f_1 , f_2 and f_3 are linearly independent on \mathbb{R} .

Now we shall obtain a sufficient condition that n functions are linearly independent on an interval I. Let us assume that each of the functions f_1, f_2, \ldots, f_n is differentiable at least (n-1) times in the interval I. Let $c_1, c_2, \ldots, c_n \in \mathbb{R}$ such that

$$c_1 f_1(x) + c_2 f_2(x) + \ldots + c_n f_n(x) = 0$$
, for all $x \in I$. (5)

We have

$$\begin{cases} c_1 f'_1(x) + c_2 f'_2(x) + \ldots + c_n f'_n(x) = 0\\ c_1 f''_1(x) + c_2 f''_2(x) + \ldots + c_n f''_n(x) = 0\\ \ldots\\ c_1 f_1^{(n-1)}(x) + c_2 f_2^{(n-1)}(x) + \ldots + c_n f_n^{(n-1)}(x) = 0, \end{cases}$$

for all $x \in I$. The nature of the solutions of these *n* linear equations in c_1, c_2, \ldots, c_n will be determined by the value of the determinant

$$W(x, f_1, f_2 \dots, f_n) = \begin{vmatrix} f_1(x) & f_2(x) & \dots & \dots & f_n(x) \\ f_1'(x) & f_2'(x) & \dots & \dots & f_n'(x) \\ \dots & \dots & \dots & \dots & \dots \\ f_1^{(n-1)}(x) & f_2^{(n-1)}(x) & \dots & \dots & f_n^{(n-1)}(x). \\ & & (6) \end{vmatrix}$$

Now if $x_0 \in I$ such that $W(x_0, f_1, f_2, \ldots, f_n) \neq 0$, then $c_1 = c_2 = \ldots = c_n = 0$, and hence the functions f_1, f_2, \ldots, f_n are linearly independent on I.

Definition

The function $W(x, f_1, f_2, ..., f_n)$ defined by the equation (6) is called Wronskian of the functions $f_1, f_2, ..., f_n$.

Show that $f_1(x) = 1$, $f_2(x) = x$, ..., $f_n(x) = x^{n-1}$ are linearly independent on \mathbb{R} .

Solution.

We calculate

$$W(x, f_1, f_2 \dots, f_n) = \begin{vmatrix} 1 & x & x^2 & \dots & x^{n-1} \\ 0 & 1 & 2x & \dots & (n-1)x^{n-2} \\ 0 & 0 & 2 & \dots & (n-1)(n-2)x^{n-3} \\ \dots & \dots & \dots & \dots \\ 0 & 0 & 0 & \dots & (n-1)! \end{vmatrix}$$

and we find $W(x, f_1, f_2, \ldots, f_n) = 0!1!2! \ldots (n-1)! \neq 0$ for all $x \in \mathbb{R}$. Then f_1, f_2, \ldots, f_n are linearly independent on \mathbb{R} .

Prove that $f_1(x) = x^2$, $f_2(x) = x^2 \ln(x)$ are linearly independent on $(0, \infty)$.

Solution.

We use the definition of

$$\begin{aligned} W(x, \ f_1, f_2) &= \left| \begin{array}{cc} x^2 & x^2 \ln(x) \\ 2x & 2x \ln(x) + x \end{array} \right| \\ &= 2x^3 \ln(x) + x^3 - 2x^3 \ln(x) = x^3 \neq 0 \text{ for all } x \in (0, \infty) \,, \end{aligned}$$

then f_1 and f_2 are linearly independent on $(0, \infty)$.

Show that

$$f_1(x) = x^2$$
 and $f_2(x) = x |x|$,

are

(i) linearly dependent on [0, 1](ii) linearly independent on [-1, 1]

Solution. (i) on [0,1] we have

$$f_1(x) = f_2(x) = x^2$$

hence

$$f_1(x) - f_2(x) = 0$$
, for all $0 \le x \le 1$.

So there exist $c_1 = 1$, $c_2 = -1$ such that

$$c_1 f_1(x) + c_2 f_2(x) = 0$$
, for all $0 \le x \le 1$.

Then f_1 and f_2 are linearly dependent on [0, 1]. (*ii*) Let $c_1, c_2 \in \mathbb{R}$ be such that

$$c_1 f_1(x) + c_2 f_2(x) = 0, \;\; {
m for \; all} \;\; -1 \leq x \leq 1,$$

hence

$$c_1 x^2 + c_2 x |x| = 0$$
 for all $-1 \le x \le 1$.

Now for x = 1 and x = -1 we have $c_1 + c_2 = 0$ and $c_1 - c_2 = 0$ which implies that $c_1 = c_2 = 0$. Then f_1 and f_2 are linearly independent on [-1, 1].

Remark 1 :

(i) If f_1, f_2, \ldots, f_n are linearly dependent on an interval I and each of the functions f_1, f_2, \ldots, f_n is differentiable at least (n-1) times on I, then

$$W(x, f_1, f_2, ..., f_n) = 0$$
, for all $x \in I$.

For example, it was proved that

$$f_1(x) = 1$$
, $f_2(x) = \sec^2(x)$, and $f_3(x) = \tan^2(x)$.

are linearly dependent on $(0, \frac{\pi}{2})$, then

$$W(x, f_1, f_2, f_3) = \begin{cases} 1 & \sec^2(x) & \tan^2(x) \\ 0 & 2\sec^2(x)\tan(x) & 2\tan(x)\sec^2(x) \\ 0 & 4\sec^2(x)\tan^2(x) + 2\sec^4(x) & 4\sec^2(x)\tan^2(x) + 2\sec^4(x) \\ = 0, \end{cases}$$

for all $x \in (0, \frac{\pi}{2})$. (*ii*) If $W(x, f_1, f_2, \ldots, f_n) = 0$ for all $x \in I$, then the functions f_1 , f_2 , ..., f_n may be linearly independent or dependent on I.

We consider the functions

$$f_1(x) = x^2$$
 and $f_2(x) = x |x|$.

on the interval I = [-1, 1]. Prove that

$$W(x, f_1, f_2) = 0$$
, for all $x \in I$.

Solution.

• For $0 < x \le 1$, we have

$$W(x, f_1, f_2) = \begin{vmatrix} x^2 & x^2 \\ 2x & 2x \end{vmatrix} = 0.$$

2 For $-1 \le x < 0$, we have

$$W(x, f_1, f_2) = \begin{vmatrix} x^2 & -x^2 \\ 2x & -2x \end{vmatrix} = 0.$$

③ For x = 0 we have

$$W(0, f_1(0), f_2(0)) = \left| egin{array}{c} f_1(0) & f_2(0) \ f_1'(0) & f_2'(0) \end{array}
ight| = \left| egin{array}{c} 0 & 0 \ 0 & 0 \end{array}
ight| = 0.$$

So $W(x, f_1, f_2) = 0$ for all $x \in [-1, 1]$, even these functions f_1 and f_2 are linearly independent on [-1, 1] (see the example (13)), where $f'_2(0) = 0$.

The main result in this section is given by the following theorem.

Theorem

If y_1, y_2, \ldots, y_n are solutions of the differential equation

$$a_n(x)y^{(n)} + a_{n-1}(x)y^{(n-1)} + \ldots + a_1(x)y' + a_0(x)y = 0,$$
 (7)

where each $a_i(x)$ is defined and continuous on an interval I and $a_n(x) \neq 0$ for all $x \in I$, then y_1, y_2, \ldots, y_n are linearly independent on I if and only if

$$W(x, y_1 y_2, \ldots, y_n) \neq 0$$
 for all $x \in I$.

We know that the functions x and x^2 are linearly independent on the interval $-1 \le x \le 1$. However

$$W(x, f_1(x), f_2(x)) = \begin{vmatrix} x & x^2 \\ 1 & 2x \end{vmatrix} = x^2,$$

so that

$$W(0, f_1(0), f_2(0)) = 0, ext{ where } x = 0 \in I = [-1, -1].$$

This fact does not contradict Theorem (22), because there is no second- order linear differential equation with the interval of definition $-1 \le x \le 1$ that has x and x^2 as solutions. We can verify that $y_1 = x$ and $y_2 = x^2$ are solutions of the second- order linear differential equation

$$x^2y'' - 2xy' + 2y = 0,$$

where the interval of definition I must exclude x = 0, since we have assumed that $a_2(x) = x^2 \neq 0$ in I. So that we conclude that the Theorem (4) is not contradicted by this example, and we should distinguish between the functions which are linearly independent on an interval I as algebraic functions, and the functions which are linearly independent on an interval I, and are solutions of a linear differential equation.

It is easy to see that the functions

$$y_1 = x, y_2 = x^2,$$

and

$$y_3 = x^3$$
.

are solutions of the differential equation

$$x^3y''' - 3x^2y'' + 6xy' - 6y = 0.$$

Show that y_1 , y_2 and y_3 are linearly independent on $(0, \infty)$.

Solution.

Here we have $a_3(x) = x^3 \neq 0$ for all x > 0 or x < 0. By using the Wronskian we have

$$W(x, y_1, y_2, y_3) = \begin{vmatrix} x & x^2 & x^3 \\ 1 & 2x & 3x^2 \\ 0 & 2 & 6x \end{vmatrix} = 2x^3 \neq 0.$$

for all $x \in (0, \infty)$, or for all $x \in (-\infty, 0)$. So y_1 , y_2 and y_3 are linearly independent on $(0, \infty)$ or on $(-\infty, 0)$. But as algebraic functions y_1 , y_2 and y_3 are linearly independent on \mathbb{R} .

Definition (Fundamental Set of Solutions)

Any set y_1, y_2, \ldots, y_n of *n* functions linearly independent solutions of the homogeneous linear *n*th-order differential equation (7) on an interval *I* is said to be a fundamental set of solutions on *I*.

Here the number of functions which form the fundamental set of solutions on i equals to the order of the equation (7).

Theorem

Let y_1, y_2, \ldots, y_n be a fundamental set of solutions of the homogeneous linear nth-order differential equation (7) on an interval I. Then for any solution y of Eq (7) on I, there exist n constants $c_1, c_2, \ldots, c_n \in \mathbb{R}$, such that

$$y(x) = c_1 y_1(x) + c_2 y_2(x) + \ldots + c_n y_n(x).$$
 (8)

Theorem (Existence of a fundamental set)

There exist a fundamental set of solutions for homogeneous linear nth-order differential equation (7) on an interval I.

Definition (General Solution of the Homogeneous Equation)

Let y_1, y_2, \ldots, y_n be a fundamental set of solutions of homogeneous linear *n*th-order differential equation (7) on an interval *I*. The general solution of the equation (7) on *I* is defined by

$$y(x) = c_1y_1(x) + c_2y_2(x) + \ldots + c_ny_n(x), x \in I,$$

where c_1, c_2, \ldots, c_n are arbitrary constants. The general solution of (7) is also called the complete solution of (7).

Verify that $y_1 = e^{2x}$, and $y_2 = e^{-3x}$ form a fundamental set of solutions of the differential equation

$$y^{\prime\prime}+y^{\prime}-6y=0,$$

and find the general solution.

Solution.

Substituting

$$y_1 = e^{2x}, y_1' = 2e^{2x}, y_1'' = 4e^{2x},$$

in the differential equation, we get

$$4e^{2x} + 2e^{2x} - 6e^{2x} = 0.$$

Hence $y_1 = e^{2x}$, is a solution of the differential equation. By the same method we can prove that $y_2 = e^{-3x}$, is also a solution of the differential equation. We now have

$$W(x, e^{2x}, e^{-3x}) = \left| egin{array}{cc} e^{2x} & e^{-3x} \ 2e^{2x} & -3e^{-3x} \end{array}
ight| = -5e^{-x}
eq 0 ext{ for all } x \in \mathbb{R}.$$

Then y_1 and y_2 are linearly independent on \mathbb{R} . From Theorem (??), we deduce the general solution of the differential equation is given by

$$y(x) = c_1 y_1(x) + c_2 y_2(x).$$

where c_1 , $c_2 \in \mathbb{R}$.

It is easy to see that the functions

$$y_1 = e^x$$
, $y_2 = e^{2x}$, and $y_3 = e^{3x}$,

are solutions of the differential equation

$$y''' - 6y'' + 11y' - 6y = 0.$$

Find the general solution of the differential equation.

Solution.

Since

$$W(x, e^{x}, e^{2x}, e^{3x}) = \begin{vmatrix} e^{x} & e^{2x} & e^{3x} \\ e^{x} & 2e^{2x} & 3e^{3x} \\ e^{x} & 4e^{2x} & 9e^{3x} \end{vmatrix} = 2e^{6x} \neq 0,$$

for all $x \in \mathbb{R}$.

We deduce that

$$y_c = c_1 e^x + c_2 e^{2x} + c_3 e^{3x}.$$

is the general solution of the differential equation.

Prove that

$$y_1 = x^3 e^x$$
, and $y_2 = e^x$,

are solutions of the differential equation

$$xy'' - 2(x+1)y' + (x+2)y = 0,$$

where x > 0. Find also the general solution of the differential equation.

Solution.

Substituting

$$y_1 = x^3 e^x, \ y'_1 = 3x^2 e^x + x^3 e^x, \ y''_1 = 6x e^x + 6x^2 e^x + x^3 e^x,$$

in the differential equation we obtain

$$6x^{2}e^{x} + 6x^{3}e^{x} + x^{4}e^{x} - 6x^{3}e^{x} - 2x^{4}e^{xe^{x}} - 6x^{2}e^{x} + -2x^{3}e^{x} + x^{4}e^{x} + 2x^{3}e^{x} = 0$$

Substitution

$$W(x, x^3 e^x, e^x) = \begin{vmatrix} x^3 e^x & e^x \\ 3x^2 e^x + x^3 e^x & e^x \end{vmatrix} = -3x^2 e^x \neq 0, \text{ for all } x > 0.$$

Then

$$y_1=x^3e^x,$$

and

$$y_2 = e^x$$
.

are linearly independent on (0, ∞), and we conclude that

$$y_c = c_1 x^3 e^x + c_2 e^x,$$

is the general solution of the differential equation.

Remark 2 :

The property of general solution exists only in the homogeneous linear nth -order differential equation (7) but does not exist in the homogeneous non- linear differential equation, for example the differential equation

$$(xy'+1)(yy'+1)=0.$$

is a non-linear first order differential equation has not general solution, because it has two family of curves of solutions $y = -\ln |xc_1|$ such that $x \neq 0$, and an arbitrary constant $c_1 \neq 0$, $y^2 + 2x = c_2$ where $y \neq 0$ and c_2 is an arbitrary constant.

Given that

$$y=c_1e^x+c_2e^{-x},$$

is a two parameters family of solutions of

$$y'' - y = 0$$
 on $(-\infty, \infty)$,

find a curve of the family satisfying the initial conditions y(0) = 0, y'(0) = 1.

Solution.

From Theorem (4) the initial value problem

$$\begin{cases} y''(x) - y(x) = 0\\ y(0) = 0 \ y'(0) = 1, \end{cases}$$

has a unique solution.

For
$$y(0) = 0$$
 we have $c_1 + c_2 = 0$ and for $y'(0) = 1$ we have $c_1 - c_2 = 1$, hence $c_1 = \frac{1}{2}$ and $c_2 = -\frac{1}{2}$. So the unique solution of the initial value problem is

$$y = \frac{1}{2}(e^x - e^{-x}) = \sinh(x).$$