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Existence Theorem and Fundamental Set of Solutions

Definition

The general linear differential equation of order n is an equation
that can be written

an(x)
dny

dxn
+ an−1(x)

dn−1y

dxn−1
+ . . .+ a1(x)

dy

dx
+ a0(x)y = R(x), (1)

where R and the coefficients a1, a2 , . . . , an are functions of x
defined on an interval I . The equation (1) is called a homogeneous
linear differential equation if the function R(x) is zero for all x ∈ I .
Suppose that the coefficients a1, a2 , . . . , an and the function R are
continuous on an interval I such that an(x) is never zero on I , then
the equation (1) is said to be normal on I . If R is not equal to zero
on I , the equation (1) is called non - homogeneous linear
differential equation.
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Example

d2y

dt2
+ w2y = 0 (undamped free vibration ).

L
d2q

dt2
+ R

dq

dt
+

1

c
q = E0 cos(wt) ( LRC − circuit).

x2y ′′ + xy ′ + λ2y = 0 ( Bessel differential equation ).
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Now we suppose that y1, y2,. . . , yk are solutions of the
homogeneous equation

an(x)y
(n) + an−1(x)y

(n−1) + . . .+ a1(x)y
′ + a0(x)y = 0, (2)

then for all for all c1, c2, . . . , ck in R

y = c1y1 + c2y2 + . . .+ ckyk ,

is also a solution of (2).
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So we have the following theorem

Theorem (Linear combination)

Any linear combination of solutions of a homogeneous linear
differential equation is also a solution.

Now we give the existence and uniqueness theorem for an initial
value problem (IVP) for nth-order linear differential equation.
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Theorem (Existence Theorem)

Given an nth-order linear differential equation

an(x)y
(n) + an−1(x)y

(n−1) + . . .+ a1(x)y
′ + a0(x)y = R(x). (3)

that is normal on an interval I . Suppose x0 ∈ I and
y0, y1, . . . , yn−1 are n arbitrary real numbers. Then there exists a
unique solution y = y(x) of (3)
satisfying the initial conditions

y(x0) = y0, y ′(x0) = y1,. . . ,y
(n−1)(x0) = yn−1. (4)
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Example

Discuss the existence of unique solution of (IVP){
(x2 + 1)y ′′ + x2y ′ + 5y = cos(x)

y(3) = 2, y ′(3) = 1.

Solution.
The functions

a2(x) = x2 + 1, a1(x) = x2, a0(x) = 5,

and
R(x) = cos(x).

are continuous on I = R = (−∞, +∞), and a2(x) ̸= 0 for all
x ∈ R, the point x0 = 3 ∈ I . Then Theorem (4) assures that the
IVP has a unique solution on R.
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Example

Find an interval I for which the initial values problem (IVP){
x2y ′′ + x√

2−x
y ′ + 2√

x
y = 0,

y(1) = 0, y ′(1) = 1.
.

has a unique solution around x0 = 1.

Solution. The function a2(x) = x2, is continuous on R and
a2(x) ̸= 0 if x > 0 or x < 0. But x0 = 1 ∈ I1 = (0, ∞ ). The
function a1(x) =

x√
2−x

, is continuous on I2 = (−∞, 2) and the

function
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a0(x) =
2√
x
, is continuous on I1 = (0, ∞ ). Then the (IVP) has a

unique solution on I1 ∩ I2 = (0, 2) = I . We can take any interval
I3 ⊂ (0, 2) such that x0 = 1 ∈ I3. So I is that the largest interval
for which the (IVP) has a unique solution.
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Example

Find an interval I for which the IVP{
(x − 1)(x − 3)y ′′ + xy ′ + y = x2,

y(2) = 1, y ′(2) = 0.

has a unique solution about x0 = 2.

Solution.
The functions

a2(x) = (x − 1)(x − 3) a1(x) = x a0(x) = 1R(x) = x2,

are continuous on R. But a2(x) ̸= 0 if x ∈ (−∞, 1) or x ∈ (1, 3)
or x ∈ (3, ∞). As x0 = 2 so we take I = (1, 3). Then the IVP
has a unique solution on I = (1, 3)
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Example

From Theorem (4), we deduce that the IVP{
3y ′′′ + 5y ′′ − y ′ + 7y = 0,

y(1) = 0, y ′(1) = 0, y ′′(1) = 0.

has a unique solution y = 0 on R.
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Definition (Linearly Dependent Solutions)

Let f1, f2, . . . , fn be n functions defined on an interval I . The
functions f1, f2, . . . , fn are said to be linearly dependent on I if
there exist n constants c1, c2, . . . , cn not all zero ( i.e. (c1, c2,
. . . , cn )̸= (0, 0,. . . , 0) ) such that

c1f1(x) + c2f2(x) + . . .+ cnfn(x) = 0 for all x ∈ I .

Mongi BLEL Linear Differential Equations of Higher Order



Existence Theorem and Fundamental Set of Solutions

Example

Prove that the functions

f1(x) = x , f2(x) = ex , f3(x) = xex ,

and
f4(x) = (2− 3x)ex ,

are linearly dependent on R.

Solution.

f4(x) = (2− 3x)ex = 2ex − 3xex = 2f2(x)− 3f3(x) + 0f1(x),

hence

0f1(x) + 2f2(x)− 3f3(x)− f4(x) = 0, for all x ∈ R.
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So there exist c1 = 0, c2 = 2, c3 = −3, and c4 = −1 such that

c1f1(x) + c2f2(x) + c3f3(x) + c4f4(x) = 0, for all x ∈ R.

Then f1, f2, f3 and f4 are linearly dependent on R.
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Example

Show that f1(x) = cos(2x), f2(x) = 1, f3(x) = cos2(x) are
linearly dependent on R.

Solution.
We know that

f3(x) = cos2(x) =
1 + cos(2x)

2
=

1

2
f2(x) +

1

2
f1(x),

for all x ∈ R.
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Then there exist c1 = c2 =
1
2 and c3 = −1 such that

c1f1(x) + c2f2(x) + c3f3(x) = 0 for all x ∈ R.

So f1, f2, and f3 are linearly dependent on R.
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Example

Show that

f1(x) = 1, f2(x) = sec2(x) and f3(x) = tan2(x)

are linearly dependent on
(
0, π

2

)
.

Solution. We know that

f2(x) = sec2(x) = 1 + tan2(x) = f1(x) + f3(x),

hence

f1(x)− f2(x) + f3(x) = 0 for all x ∈
(
0,

π

2

)
.
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So there exist c1 = c3 = 1 and c2 = −1 such that

c1f1(x) + c2f2(x) + c3f3(x) = 0 for all x ∈
(
0,

π

2

)
.

So f1, f2 and f3 are linearly dependent on x ∈
(
0, π

2

)
.
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Definition (Linearly Independent Solutions)

Let f1, f2, . . . , fn be n functions defined on an interval I . The
functions f1, f2, . . . , fn are said to be linearly independent on I if
the equation

c1f1(x) + c2f2(x) + . . .+ cnfn(x) = 0, for all x ∈ I .

is true only for c1 = c2 = . . . = cn = 0.
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Example

Show that f1(x) = x and f2(x) = x2 are linearly independent on
I = [−1, 1].

Solution. Let c1, c2 ∈ R such that

c1f1(x) + c2f2(x) = 0, for all x ∈ I .
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We have to prove that c1 = c2 = 0. As

c1x + c2x
2 = 0 for all − 1 ≤ x ≤ 1,

then for x = 1 and x = −1
2 we have

c1 + c2 = 0,

and

−1

2
c1 +

1

4
c2 = 0,

which implies that c1 = c2 = 0. Then f1, and f2 are linearly
independent on I .
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Example

Show that
f1(x) = sin(x) f2(x) = sin(2x),

are linearly independent on I = [0, π).

Solution. Let c1, c2 ∈ I such that

c1f1(x) + c2f2(x) = 0 for all x ∈ I .

We have to show that c1 = c2 = 0. In fact for x = π
4 , and x = π

3
we have {

c1 sin(
π
4 ) + c2 sin(

π
2 ) = 0,

c1 sin(
π
3 ) + c2 sin(2

π
3 ) = 0,
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hence
1√
2
c1 + c2 = 0,

√
3

2
c1 +

√
3

2
c2 = 0,

which implies that c1 = c2 = 0. Then f1, and f2 are linearly
independent on I .
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Example

Show that

f1(x) = 1, f2(x) = ex , and f3(x) = e−x .

are linearly independent on R.

Solution.
Let c1, c2, c3 ∈ R such that

c1f1(x) + c2f2(x) + c3f3(x) = 0, for all x ∈ R.
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We have to prove that c1 = c2 = c3 = 0. In fact we have

c1 + c2e
x + c3e

−x = 0, for all x ∈ R,

then for the values x = 0, x = 1, x = −1, we have
c1 + c2 + c3 = 0

c1+c2e + c3e
−1 = 0

c1 + c2e
−1 + c3e = 0,

which implies that c1 = c2 = c3 = 0. Then f1, f2 and f3 are
linearly independent on R.
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Now we shall obtain a sufficient condition that n functions are
linearly independent on an interval I . Let us assume that each of
the functions f1, f2, . . . , fn is differentiable at least (n − 1) times
in the interval I . Let c1, c2, . . . , cn ∈ R such that

c1f1(x) + c2f2(x) + . . .+ cnfn(x) = 0, for all x ∈ I . (5)
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We have
c1f

′
1(x) + c2f

′
2(x) + . . .+ cnf

′
n(x) = 0

c1f
′′
1 (x) + c2f

′′
2 (x) + . . .+ cnf

′′
n (x) = 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..

c1f
(n−1)
1 (x) + c2f

(n−1)
2 (x) + . . .+ cnf

(n−1)
n (x) = 0,

for all x ∈ I . The nature of the solutions of these n linear
equations in c1, c2, . . . , cn will be determined by the value of the
determinant

W (x , f1, f2 . . . , fn) =

∣∣∣∣∣∣∣∣
f1(x) f2 (x) . . . . . . fn(x)
f ′1(x) f ′2(x) . . . . . . f ′n(x)
. . . . . . . . . . . . . . .

f
(n−1)
1 (x) f

(n−1)
2 (x) . . . . . . f

(n−1)
n (x).

∣∣∣∣∣∣∣∣
(6)
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Now if x0 ∈ I such that W (x0, f1, f2, . . . , fn) ̸= 0, then
c1 = c2 = . . . = cn = 0, and hence the functions f1, f2, . . . , fn are
linearly independent on I .
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Definition

The function W (x , f1, f2, . . . , fn) defined by the equation (6) is
called Wronskian of the functions f1, f2, . . . , fn.
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Example

Show that f1(x) = 1, f2(x) = x , , . . . , fn(x) = xn−1 are linearly
independent on R.

Solution.
We calculate

W (x , f1, f2 . . . , fn) =

∣∣∣∣∣∣∣∣∣∣
1 x x2 . . . xn−1

0 1 2x . . . (n − 1)xn−2

0 0 2 . . . (n − 1)(n − 2)xn−3

. . . . . . . . . . . . . . .
0 0 0 . . . (n − 1)!

∣∣∣∣∣∣∣∣∣∣
and we find W (x , f1, f2, . . . , fn) = 0!1!2! . . . (n − 1)! ̸= 0 for all
x ∈ R. Then f1, f2, . . . , fn are linearly independent on R.
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Example

Prove that f1(x) = x2, f2(x) = x2 ln(x) are linearly independent
on (0, ∞).

Solution.
We use the definition of

W (x , f1, f2) =

∣∣∣∣ x2 x2 ln(x)
2x 2x ln(x) + x

∣∣∣∣
= 2x3 ln(x) + x3 − 2x3 ln(x) = x3 ̸= 0 for all x ∈ (0,∞) ,

then f1 and f2 are linearly independent on (0, ∞) .
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Example

Show that
f1(x) = x2and f2(x) = x |x | ,

are
(i) linearly dependent on [0, 1]
(ii) linearly independent on [−1, 1]
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Solution.
(i) on [0,1] we have

f1(x) = f2(x) = x2,

hence
f1(x)− f2(x) = 0, for all 0 ≤ x ≤ 1.

So there exist c1 = 1, c2 = −1 such that

c1f1(x) + c2f2(x) = 0, for all 0 ≤ x ≤ 1.

Then f1 and f2 are linearly dependent on [0, 1].
(ii) Let c1, c2 ∈ R be such that

c1f1(x) + c2f2(x) = 0, for all − 1 ≤ x ≤ 1,

hence
c1x

2 + c2x |x | = 0 for all− 1 ≤ x ≤ 1.
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Now for x = 1 and x = −1 we have c1 + c2 = 0 and c1 − c2 = 0
which implies that c1 = c2 = 0. Then f1 and f2 are linearly
independent on [−1, 1].

Remark 1 :
(i) If f1, f2, . . . , fn are linearly dependent on an interval I and each
of the functions f1, f2,. . . , fn is differentiable at least (n − 1) times
on I , then

W (x , f1, f2, . . . , fn) = 0, for all x ∈ I .
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For example, it was proved that

f1(x) = 1, f2(x) = sec2(x), and f3(x) = tan2(x).

are linearly dependent on
(
0, π

2

)
, then

W (x , f1, f2, f3)

=

∣∣∣∣∣∣
1 sec2(x) tan2(x)
0 2 sec2(x) tan(x) 2 tan(x) sec2(x)
0 4 sec2(x) tan2(x) + 2 sec4(x) 4 sec2(x) tan2(x) + 2 sec4(x

∣∣∣∣∣∣
= 0,

for all x ∈
(
0, π

2

)
.

(ii) If W (x , f1, f2, . . . , fn) = 0 for all x ∈ I , then the functions f1,
f2, . . . , fn may be linearly independent or dependent on I .
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Example

We consider the functions

f1(x) = x2 and f2(x) = x |x | .

on the interval I = [−1, 1]. Prove that

W (x , f1, f2) = 0, for all x ∈ I .
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Solution.

1 For 0 < x ≤ 1, we have

W (x , f1, f2) =

∣∣∣∣ x2 x2

2x 2x

∣∣∣∣ = 0.

2 For −1 ≤ x < 0, we have

W (x , f1, f2) =

∣∣∣∣ x2 −x2

2x −2x

∣∣∣∣ = 0.

3 For x = 0 we have

W (0, f1(0), f2(0)) =

∣∣∣∣ f1(0) f2(0
f ′1(0) f ′2(0)

∣∣∣∣ = ∣∣∣∣ 0 0
0 0

∣∣∣∣ = 0.
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So W (x , f1, f2) = 0 for all x ∈ [−1, 1], even these functions f1
and f2 are linearly independent on [−1, 1] (see the example (13) ),
where f ′2(0) = 0.
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The main result in this section is given by the following theorem.

Theorem

If y1,y2, . . . , yn are solutions of the differential equation

an(x)y
(n) + an−1(x)y

(n−1) + . . .+ a1(x)y
′ + a0(x)y = 0, (7)

where each ai (x) is defined and continuous on an interval I and
an(x) ̸= 0 for all x ∈ I , then y1,y2, . . . , yn are linearly
independent on I if and only if

W (x , y1 y2, . . . , yn) ̸= 0 for all x ∈ I .
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Example

We know that the functions x and x2 are linearly independent on
the interval −1 ≤ x ≤ 1. However

W (x , f1(x), f2(x)) =

∣∣∣∣ x x2

1 2x

∣∣∣∣ = x2,

so that

W (0, f1(0), f2 (0)) = 0, where x = 0 ∈ I = [−1,− 1] .
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This fact does not contradict Theorem (22), because there is no
second- order linear differential equation with the interval of
definition −1 ≤ x ≤ 1 that has x and x2 as solutions. We can
verify that y1 = x and y2 = x2 are solutions of the second- order
linear differential equation

x2y ′′ − 2xy ′ + 2y = 0,

where the interval of definition I must exclude x = 0, since we
have assumed that a2(x) = x2 ̸= 0 in I . So that we conclude that
the Theorem (4) is not contradicted by this example, and we
should distinguish between the functions which are linearly
independent on an interval I as algebraic functions, and the
functions which are linearly independent on an interval I , and are
solutions of a linear differential equation.

Mongi BLEL Linear Differential Equations of Higher Order



Existence Theorem and Fundamental Set of Solutions

Example

It is easy to see that the functions

y1 = x , y2 = x2,

and
y3 = x3.

are solutions of the differential equation

x3y ′′′ − 3x2y ′′ + 6xy ′ − 6y = 0.

Show that y1, y2 and y3 are linearly independent on (0, ∞).
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Solution.
Here we have a3(x) = x3 ̸= 0 for all x > 0 or x < 0. By using
the Wronskian we have

W (x , y1, y2, y3) =

∣∣∣∣∣∣
x x2 x3

1 2x 3x2

0 2 6x

∣∣∣∣∣∣ = 2x3 ̸= 0.

for all x ∈ (0, ∞), or for all x ∈ (−∞, 0). So y1, y2 and y3 are
linearly independent on (0, ∞) or on (−∞, 0). But as algebraic
functions y1, y2 and y3 are linearly independent on R.
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Definition (Fundamental Set of Solutions)

Any set y1, y2, . . . , yn of n functions linearly independent solutions
of the homogeneous linear nth-order differential equation (7) on an
interval I is said to be a fundamental set of solutions on I .

Here the number of functions which form the fundamental set of
solutions on i equals to the order of the equation (7).
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Theorem

Let y1, y2, . . . , yn be a fundamental set of solutions of the
homogeneous linear nth-order differential equation (7) on an
interval I . Then for any solution y of Eq (7) on I , there exist n
constants c1, c2,. . . . , cn ∈ R, such that

y(x) = c1y1(x) + c2y2(x) + . . .+ cnyn(x). (8)
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Theorem (Existence of a fundamental set)

There exist a fundamental set of solutions for homogeneous linear
nth-order differential equation (7) on an interval I .
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Definition (General Solution of the Homogeneous Equation)

Let y1, y2,. . . ,yn be a fundamental set of solutions of homogeneous
linear nth-order differential equation (7) on an interval I .The
general solution of the equation (7) on I is defined by

y(x) = c1y1(x) + c2y2(x) + . . .+ cnyn(x), x ∈ I ,

where c1,c2,. . . , cn are arbitrary constants. The general solution of
(7) is also called the complete solution of (7).
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Example

Verify that y1 = e2x , and y2 = e−3x form a fundamental set of
solutions of the differential equation

y ′′ + y ′ − 6y = 0,

and find the general solution.

Solution.
Substituting

y1 = e2x , y ′1 = 2e2x , y ′′1 = 4e2x ,

in the differential equation, we get

4e2x + 2e2x − 6e2x = 0.
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Hence y1 = e2x , is a solution of the differential equation. By the
same method we can prove that y2 = e−3x , is also a solution of
the differential equation. We now have

W (x , e2x , e−3x) =

∣∣∣∣ e2x e−3x

2e2x −3e−3x

∣∣∣∣ = −5e−x ̸= 0 for all x ∈ R.

Then y1 and y2 are linearly independent on R. From Theorem
(??), we deduce the general solution of the differential equation is
given by

y(x) = c1y1(x) + c2y2(x).

where c1, c2 ∈ R.
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Example

It is easy to see that the functions

y1 = ex , y2 = e2x , and y3 = e3x ,

are solutions of the differential equation

y ′′′ − 6y ′′ + 11y ′ − 6y = 0.

Find the general solution of the differential equation.

Solution.
Since

W (x , ex , e2x , e3x) =

∣∣∣∣∣∣
ex e2x e3x

ex 2e2x 3e3x

ex 4e2x 9e3x

∣∣∣∣∣∣ = 2e6x ̸= 0,

for all x ∈ R.
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We deduce that

yc = c1e
x + c2e

2x + c3e
3x .

is the general solution of the differential equation.
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Example

Prove that
y1 = x3ex , and y2 = ex ,

are solutions of the differential equation

xy ′′ − 2(x + 1)y ′ + (x + 2)y = 0,

where x > 0. Find also the general solution of the differential
equation.

Solution.
Substituting

y1 = x3ex , y ′1 = 3x2ex + x3ex , y ′′1 = 6xex + 6x2ex + x3ex ,

in the differential equation we obtain

6x2ex+6x3ex+x4ex−6x3ex−2x4exe
x−6x2ex+−2x3ex+x4ex+2x3ex = 0.

Substituting
y2 = y ′2 = y ′′2 = ex ,

in the differential equation

xex − 2xex − 2ex + xex + 2ex = 0.

We now have to show that

y1 = x3ex , y2 = ex ,

and are linearly independent on (0, ∞). In fact
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W (x , x3ex , ex) =

∣∣∣∣ x3ex ex

3x2ex + x3ex ex

∣∣∣∣ = −3x2ex ̸= 0, for all x > 0.

Then
y1 = x3ex ,

and
y2 = ex .

are linearly independent on (0, ∞), and we conclude that

yc = c1x
3ex + c2e

x ,

is the general solution of the differential equation.

Mongi BLEL Linear Differential Equations of Higher Order



Existence Theorem and Fundamental Set of Solutions

Remark 2 :
The property of general solution exists only in the homogeneous
linear nth -order differential equation (7) but does not exist in the
homogeneous non- linear differential equation, for example the
differential equation

(xy ′ + 1)(yy ′ + 1) = 0.

is a non-linear first order differential equation has not general
solution, because it has two family of curves of solutions
y = − ln |xc1| such that x ̸= 0, and an arbitrary constant c1 ̸= 0,
y2 + 2x = c2 where y ̸= 0 and c2 is an arbitrary constant.

Mongi BLEL Linear Differential Equations of Higher Order



Existence Theorem and Fundamental Set of Solutions

Example

Given that
y = c1e

x + c2e
−x ,

is a two parameters family of solutions of

y ′′ − y = 0 on (−∞,∞),

find a curve of the family satisfying the initial conditions y(0) = 0,
y ′(0) = 1.
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Solution.
From Theorem (4) the initial value problem{

y ′′(x)− y(x) = 0
y(0) = 0 y ′(0) = 1,

has a unique solution.
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For y(0) = 0 we have c1 + c2 = 0 and for y ′(0) = 1 we have
c1 − c2 = 1, hence c1 =1

2 and c2 = −1
2 . So the unique solution of

the initial value problem is

y =
1

2
(ex − e−x) = sinh(x).
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