
Orthogonal Trajectories 

Recall, two non-vertical lines               with 

slopes                   , respectively, are orthogonal if 

and only if              .  

Let                       and                      be two 

families of curves in a plane such that their 

tangent lines are orthogonal at each point of their 

intersection, then the two families are said to be 

orthogonal trajectories of each other. 

Hence, if the D. E. of one family is                     , 

 then the D. E. of the second one is  
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Example 1 

Find the orthogonal trajectories for the family of circles 

 

Solution. Let us rewrite equation (1)  on the form 

 

Differentiating equation (2) with respect to      we get 

 

 

From (2) we have                   ,  hence the differential 

equation of the given family is  
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Therefore the differential equation of the orthogonal family  

is 

 

which is homogeneous D.E. 

To solve equation (4)  

let                                              hence equation (4) becomes 
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Integrating both sides we obtain 

 

 

 

which represents also a family of circles, where                                                  

Example 2. 

Find the member of the orthogonal trajectories of the family  

of curves                 which passes through the point A(2,0). 

Solution. Since                                         . 

But                                               , this is the D. E. of the 

given family, hence the D. E. of the orthogonal family is 
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Integrating both sides we obtain 

 

Since the curve passes through A(2,0), substituting this 

point in the last equation implies            , hence the 

member is   

Example 3 

Find the orthogonal trajectories for the family of curves 

 

Solution. Since  
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Therefore, the DE of the orthogonal family is 

 

 

 

 

 

 

Example 4 

Find the orthogonal trajectories for the family of the 

hyperbolas  
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Solution 

Differentiating both sides with respect to x  we get 

 

  

 

That is the D.E of the given family (first family) is 

 

 

hence the D. E. for the new family (the second family, or 

the orthogonal trajectories) is 

 

 

Which is a first order D. E. with linear coefficients. 
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These linear coefficients represent two intersected lines 

given by 

 

Solving these equations for x and y we get: 

Now let  

using these values in the D. E.   (1)   we get 

 

which is homogeneous differential equation. To solve it let 

 

Using these values in (2) we obtain 
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which is Separable D.E 

 

and by integrating both sides we obtain 

 

 

 

 

Notice, that D.E. (1) is exact. Since 

 

 

Hence the general solution is on the form:  
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Hence we have 

 

 

Homework 

Find the orthogonal trajectories for the family of curves 
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