
First order linear differential equation

A first order linear D.E. is on the form  

or equivalently,
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we seek a solution of equation (1) which is defined on some 

interval I on which p and  q are continuous.

It is easy to see that                        is an integrating factor for 

Equation (1).
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Multiplying both sides of Equation (1) by µ(x), we obtain
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That is 
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Integrating both sides of (2) we get
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Example1: Solve the DE
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Example 2: Solve the DE:

After rearranging, the equation becomes 
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Example 3

Solve the initial value problem

First, put the equation on the standard form:

Then
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Using the initial condition y (1) = 2 in the general solution

it follows that

The graphs below show several curves for different values of 

c, and a particular solution (in red) whose graph passes 

through the initial point (1,2).
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Bernoulli’s D. Equation
A first order DE on the form

Where  n is a real number different than 0 or  1 is 

called Bernoulli’s DE, which can be reduced to a first order

linear DE using a suitable substitution.

Indeed, divide both sides of (1) by       to get 
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Example1

Solve the DE

Solution. Rewrite Equation (1) on the standard form

Now, (2) is a Bernoulli’s equation. Dividing both sides of (2) by

we get 
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Using these values in (3) we obtain
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Multiplying (4) by        we obtain

which is LDE.

Multiplying both sides of (5) by             we obtain
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Example 2

Solve the DE

Rewrite Equation (1) on the standard form

which is Bernoulli’s DE. Multiplying both sides of (2) by

we get 
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Multiplying  (4) by  4  we get

which is LDE.

Multiplying both sides of  (5) by            we obtain
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Example 3

Solve the DE

Rewrite Equation (1) on the standard form

which is Bernoulli’s DE. Dividing both sides of (2) by       we get 4
y
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which is LDE  with
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Notice that equation (1) is separable D.E.

But the left hand integral is lengthy, in fact it needs partial fraction 

and after that completing the square for one of the resulting

fractions.

Homework.
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