
Definition 

A function     in two variables    and    , is said to 

be homogeneous of degree    , if 

 

for any real number    .      

For example: 
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While                                             is not homogeneous.   

Here the function  g  is a polynomial. 

Remark: A polynomial in two variables is homogeneous  if 

all it’s terms are of the same degree. 

 For example  
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Homogeneous Differential Equation 

A first order DE 

 

 

is said to be homogeneous  if the function       is homogeneous of 

degree zero.            

 

While the DE  

 

is homogeneous if both                      are homogeneous functions  

of the same degree. 
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A homogeneous DE is solved by reducing it to a 

separable DE using one of the substitutions 

 

 

Example 1 

Solve the DE                                          . 

The DE is homogeneous.  

Let  
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Thus, the solution of the DE is given by  
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Example 2 

Solve the following differential equation.  

 
 

Solution. 

The DE is homogeneous. 

Thus, let   

Hence, we have  
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Example 3 

Solve the initial value problem  

 
 

Solution 

The DE is homogeneous, thus, let   

 

Hence, we have  
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Since  

 

Hence , the solution is    
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Homework 

Solve the following DE    
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Differential Equations with linear coefficients 
Consider the first order DE 

 

 

where                       are constants and              .                             

 

If              , then the above differential equation can be reduced to a 

 

 separable DE using the substitution     

 

If              , then it can be converted to a homogeneous DE as 

 

follows:  
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Put 

                           

then, solve these two equations simultaneously, 

assume the solution is      

Now, let 

 

 

This substitution will reduce the equation to a 

homogeneous DE, then it can be solved by 

reducing it to a separable DE. 
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Example 1 

 

Solve the DE: 

 

Here                                  Hence                      , therefore put 

 

 

Hence the DE becomes 

 

 

 

Which is a separable DE. 
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Example 2 

 

Solve the DE: 

 

Here                                    Hence              , therefore, solve the two 

equations  

to obtain 

Now let 

Hence the DE becomes 

 

 

Which is a homogeneous DE. 
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