First order ODEs

In this chapter we will consider first order ODEs,

 $F(x, y, \frac{dy}{dx}) = 0$, and we assume that the equation can be written in the form $\frac{dy}{dx} = f(x, y)$.

Three questions may be raised:

Does a solution of a first order DE exist?

If yes, is it unique?

And how can we find this solution?

Initial Value Problem

Some times we are interested in solving a differential equation subject to some given conditions.

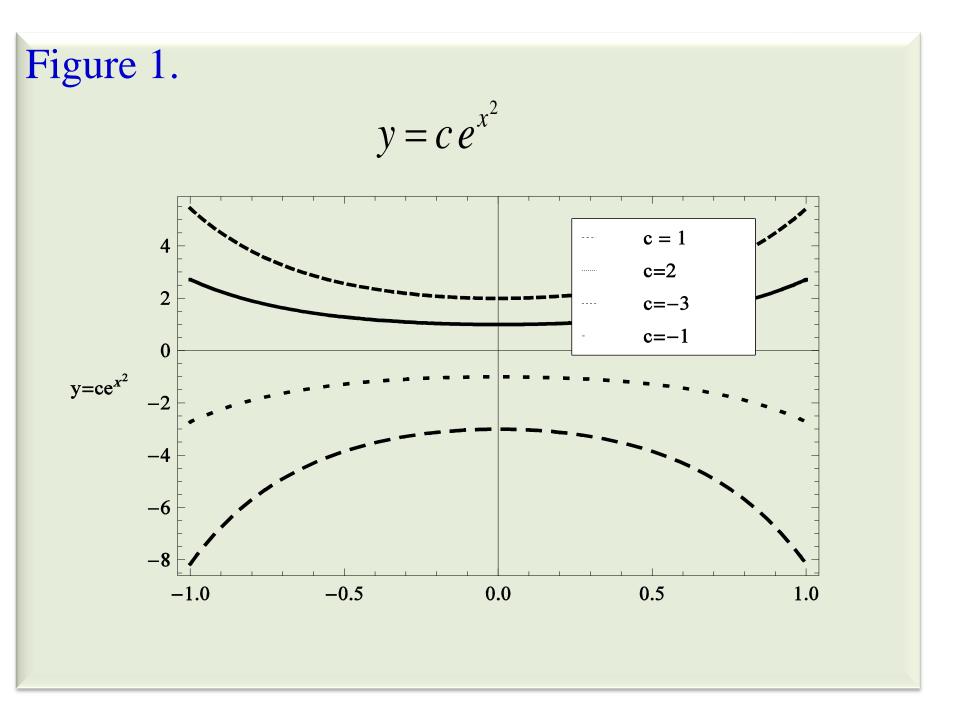
The problem Solve the DE: $\frac{dy}{dx} = f(x, y)$

Subject to the condition: $y(x_0) = y_0$ is called a first order initial value problem.

The DE $\frac{dy}{dx} = 2xy$ has the one-parameter family of solutions $y = ce^{x^2}$ on $(-\infty, \infty)$. Exactly one member of this family satisfies the condition y(0) = 2. Namely, $y = 2e^{x^2}$, which is the unique member of this family whose curve passes through the point (0,2). Thus the IVP:

$$\begin{cases} \frac{dy}{dx} = 2xy, \\ y(0) = 2, \end{cases}$$

has the unique solution $y = 2e^{x^2}$.



The DE $\frac{dy}{dx} = x\sqrt{y}$ has the one-parameter family of solutions $y = \left(\frac{x^2+c}{4}\right)^2$ on $(-\infty,\infty)$. In fact the DE has 2 solutions satisfying the condition y(0) = 0, namely, $y = \frac{x^4}{16}$, y = 0, since their graphs pass through the point (0,0), Thus the IVP:

$$\begin{cases} y' = x\sqrt{y}, \\ y(0) = 0, \end{cases}$$

has two solutions.

But the initial value problem

$$\begin{cases} (y')^2 + y^4 + 5 = 0, \\ y(0) = 0, \end{cases}$$

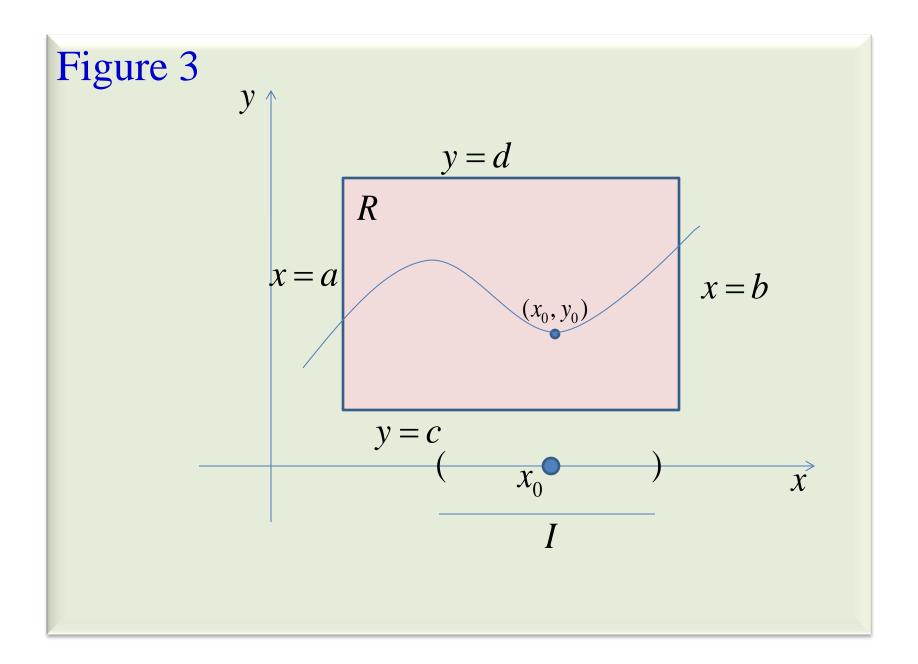
Does not have any real solution.

When does a solution of a given IVP exist and it is unique?

Theorem (Picard) (Existence and uniqueness)

Let R be a rectangular region in the *xy*-plane defined by $a \le x \le b$, $c \le y \le d$ and contains the point (x_0, y_0) in its interior. If both f(x, y) and $\frac{\partial f}{\partial y}$ are continuous on R, then there exists an interval *I* centered at x_0 and a unique function y(x) defined on *I* which satisfies the IVP:

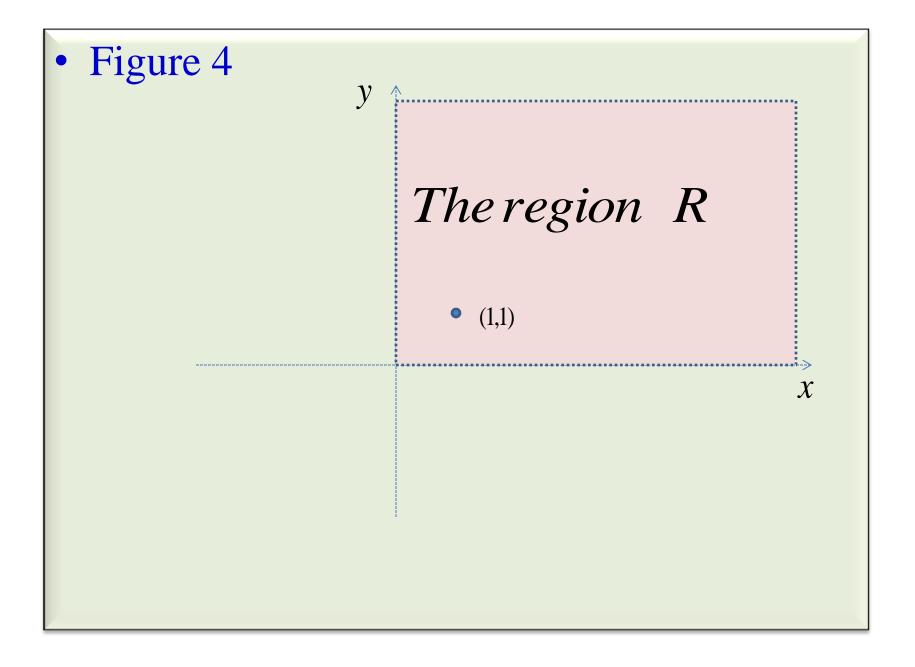
$$\frac{dy}{dx} = f(x, y), \quad y(x_0) = y_0.$$



Find and sketch the largest region in the *xy*-plane through which the IVP:

$$\frac{dy}{dx} = \sqrt{xy}, \quad y(1) = 1,$$

has a unique solution. Solution: $f(x, y) = \sqrt{xy}$ and $\frac{\partial f}{\partial y} = \frac{x}{2\sqrt{xy}}$ both functions are continuous provided that xy > 0. Since $(x_0, y_0) = (1, 1)$ lies in the first quadrant we have $R = \{(x, y) \in R^2 : x > 0, y > 0\}$



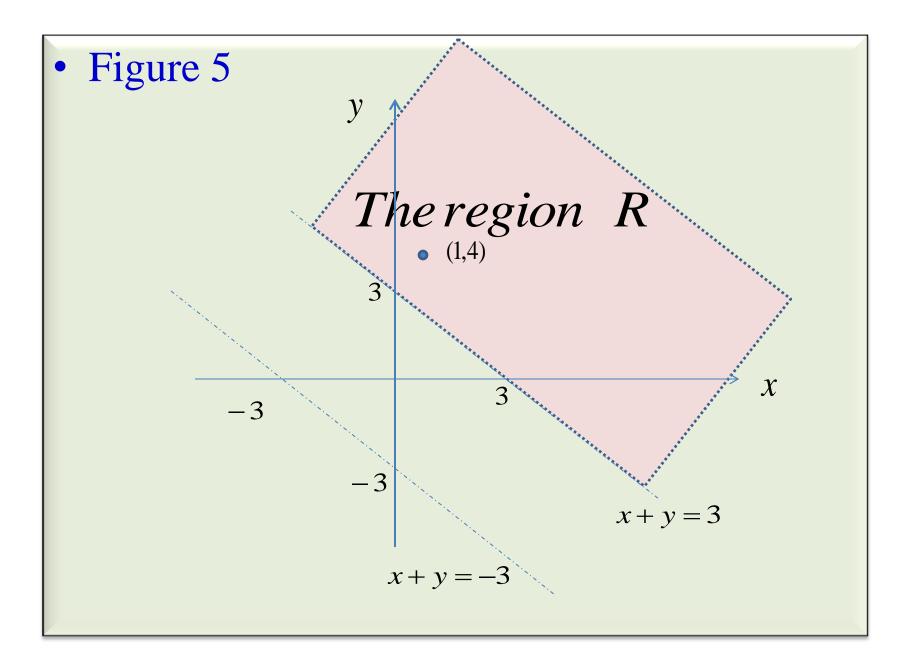
Find and sketch the largest region in the *xy*-plane through which the IVP:

$$\frac{dy}{dx} = \sqrt{(x+y)^2 - 9}, \quad y(1) = 4,$$

has a unique solution.

Solution:

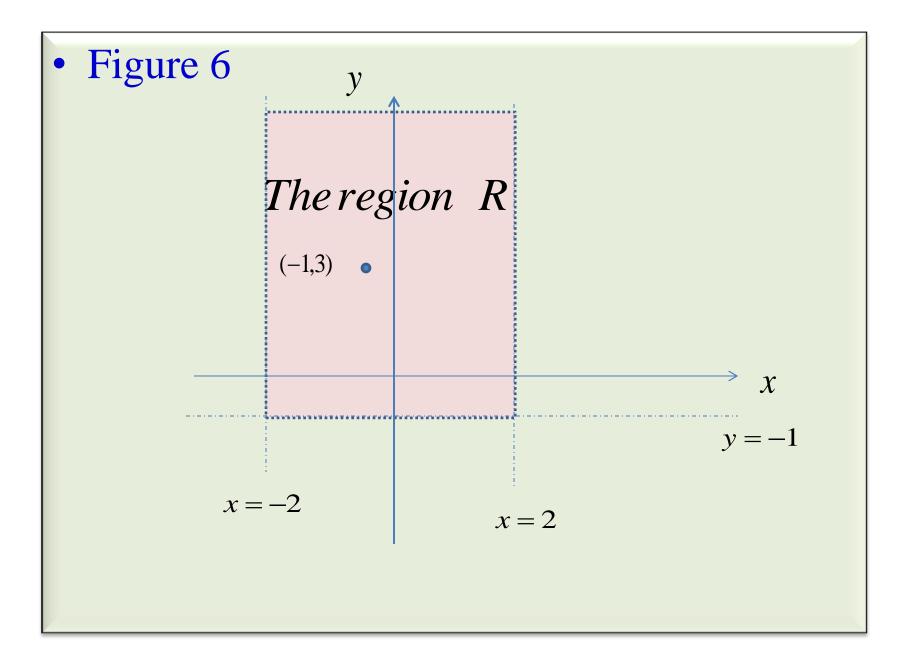
 $f(x, y) = \sqrt{(x+y)^2 - 9} \text{ and } \frac{\partial f}{\partial y} = \frac{x+y}{\sqrt{(x+y)^2 - 9}}$ both are continuous provided that |x+y| > 3 that is x+y>3 or x+y<-3. Thus the region **R** is given by $R = \{(x, y) \in R^2 : x+y>3\}.$



Find and sketch the largest region in the *xy* plane through which the IVP:

$$(y^{2}+2y+1)\frac{dy}{dx} - \ln(4-x^{2}) = 0, \quad y(-1) = 3,$$

has a unique solution. Solution: $f(x, y) = \frac{\ln(4-x^2)}{(y+1)^2}$ and $\frac{\partial f}{\partial y} = \frac{-2\ln(4-x^2)}{(y+1)^3}$ both are continuous provided that -2 < x < 2and $y \neq -1$. Hence the region R is given by $R = \{(x, y) \in R^2 : -2 < x < 2, y > -1\}$



Homework

Determine whether the existence and uniqueness theorem guarantees that the differential equation:

$$\frac{dy}{dx} = \sqrt{y^2 - 9}$$

has a unique solution at any of the following points:

$$(i) (5,3) (ii) (2,-3) (iii) (1,-1) (iv) (3,4)$$