The Linear

First Order Differential Equations

Mongi BLEL

Department of Mathematics King Saud University

August 25, 2024

Table of contents

[First Order](#page-0-0) Differential Equations

[Introduction](#page-2-0)

Mongi BLEL

-
-
-
- [Solving Some](#page-39-0)
-
-
- The Linear
- 2 [Separable Equations](#page-21-0)
- 3 [Equations with Homogeneous Coefficients](#page-29-0)
- 4 [Solving Some Differential Equations by Using Appropriate](#page-39-0) [Substitution](#page-39-0)
- 5 [Exact Differential Equations](#page-57-0)
- 6 [Integrating Factors](#page-78-0)
- 7 [The Linear Differential Equation](#page-101-0)
- **8 [Bernoulli's Equation](#page-117-0)**

[Introduction](#page-2-0)

[Solving Some](#page-39-0)

The Linear

Introduction In this chapter we study several elementary methods for solving first -order differential equations. Consider the equation of order one

$$
F(x,y,y')=0.
$$

We suppose that the equation [\(1\)](#page-2-1), with some conditions, can be written as

$$
y'=\frac{dy}{dx}=f(x,y).
$$

The equation [\(1\)](#page-2-2) can be also written in the form

$$
M(x, y)dx + N(x, y)dy = 0,
$$

where M and N are two functions of x and y .

Initial-Value Problems

[First Order](#page-0-0) Differential Equations Mongi BLEL

[Introduction](#page-2-0)

[Solving Some](#page-39-0)

The Linear

We are often interested in problems in which we seek a solution $y(x)$ of differential equation so that it satisfies prescribed side conditions. that is conditions imposed on the unknown $y(x)$ or its derivatives. On some interval I containing x_0 , the problem

$$
\begin{cases}\n\frac{d^n y}{dx^n} = f(x, y, y', \dots, y^{(n-1)}) \\
y(x_0) = y_0, y'(x_0) = y_1, \dots, y^{(n-1)}(x_0) = y_{n-1},\n\end{cases}
$$

[Introduction](#page-2-0)

[Solving Some](#page-39-0)

The Linear

where $y_0, y_1, \ldots, y_{n-1}$ are arbitrary specified real constants, is called an **initial value problem** (*IVP*). The values $y(x)$ and its first $n - 1$ derivatives at a single point $x_0 : y(x_0) = y_0$, $y'(x_0) = y_1, \ldots, y^{(n-1)}(x_0) = y_{n-1}$ are called **initial** conditions.

Special cases: First and second-order (IVPs)

$$
\begin{cases} \frac{dy}{dx} = f(x, y), \\ y(x_0) = y_0, \end{cases}
$$

$$
\begin{cases}\n\frac{d^2y}{dx^2} = f(x, y, y'),\\ \ny(x_0) = y_0, \ y'(x_0) = y_1,\n\end{cases}
$$

are first and second-order initial value problems, respectively.

[First Order](#page-0-0) Differential Equations

Mongi BLEL

[Introduction](#page-2-0)

[Solving Some](#page-39-0)

The Linear

What is the function you know from calculus, that is equal to its derivative?

Solution. It is clear that $y = ce^x$ is one parameter family of solution of the simple first -order equation $y'=y$. All solutions in this family are defined on the interval $(-\infty, \infty)$. If we impose an initial condition, say $y(0) = 4$, then substituting $x = 0$ and $y = 4$ in the family determines the constant $c = 4$. Thus $y = 4e^x$ is a solution of the (IVP)

$$
\begin{cases}\ny' = y, \\
y(0) = 4.\n\end{cases}
$$

[Introduction](#page-2-0)

The Linear

Now if we demand that a solution curve pass through the point (1, −3) rather than (0, 4), then $y(1) = -3$ will yield $-3 = ce$ or $c=-3e^{-1}.$ In this case we have $y=-3e^{\times -1}$ is the solution of the (IVP)

$$
\begin{cases}\n y' = y, \\
 y(1) = -3.\n\end{cases}
$$

[First Order](#page-0-0) Differential **Equations** Mongi BLEL

[Introduction](#page-2-0)

[Solving Some](#page-39-0)

The Linear

It is easy to see that a one-parameter family of solutions of the first-order differential equation

$$
y'+2xy^2=0,
$$

is

$$
y=\frac{1}{x^2+c}.
$$

If we impose the initial condition $y(0) = -1$, then substituting $x = 0$, and $y = -1$ into the family of solutions gives $c = -1$. Thus \overline{a}

$$
y=\frac{1}{x^2-1}.
$$

[Introduction](#page-2-0)

[Solving Some](#page-39-0)

The Linear

Remark 1 : The domain of the function

$$
y=\frac{1}{x^2-1},
$$

is
$$
R = \{x \in \mathbb{R}, \ x \neq \pm 1\}
$$
. Then

 $R = \{x \in \mathbb{R}, x > 1\} \cup \{x \in \mathbb{R}, -1 < x < 1\} \cup \{x \in \mathbb{R}, x < -1\}$

But $x_0 = 0$ then $x_0 \in R_1 = \{x \in \mathbb{R} - 1 < x < 1\}$. So the largest interval on which $y = \frac{1}{x^2-1}$ $\frac{1}{x^2-1}$ is a solution satisfying the condition $y(0) = -1$ is $-1 < x < 1$. This example illustrates that the interval $I = (-1, 1)$ of definition of solution $y(x)$ depends on the initial condition $y(0) = -1.$

[Introduction](#page-2-0)

[Solving Some](#page-39-0)

The Linear

It is desirable to know in advance, when solving an initial value problem, whether its solution exists, and is it unique?. Now we state here without proof a straightforward theorem that gives conditions that are sufficient to guarantee the existence and uniqueness of solution of a first-order initial-value problem of the form

$$
\begin{cases}\ny' = f(x, y), \\
y(x_0) = y_0.\n\end{cases}
$$

That is solve the equation $y' = f(x, y)$ subject to the initial condition $y(x_0) = y_0$.

Existence Theorem

[First Order](#page-0-0) Differential Equations Mongi BLEL

[Introduction](#page-2-0)

[Solving Some](#page-39-0)

Theorem

Consider the differential equation of order one

$$
\frac{dy}{dx}=f(x,y).
$$

Let $T = \{(x, y), |x - x_0| \le a, |y - y_0| \le b\}$, be the rectangular region with the center (x_0, y_0) . Suppose that f and $\frac{\partial f}{\partial y}$ are continuous functions of x and y on T. Under the conditions imposed on $f(x, y)$ above, an interval exists about x_0 , $|x - x_0|$ < h, and a function $y(x)$ which has the following properties

[Introduction](#page-2-0)

[Solving Some](#page-39-0)

The Linear

Theorem

- \blacksquare y = y(x) is a solution of the equation [\(10\)](#page-9-0) on the interval $|x - x_0| < h$.
- $|2| |y(x) y_0| \le b$ on the interval $|x x_0| \le h$.

$$
3 \ \ y = y(x_0) = y_0.
$$

4 y is the unique solution of the differential equation on the interval $|x - x_0| \leq h$ with $y(x_0) = y_0$.

[First Order](#page-0-0) Differential **Equations** Mongi BLEL

[Introduction](#page-2-0)

The Linear

Find the largest region of the xy−plane for which the initial value problem

$$
\begin{cases} \sqrt{x^2 - 4}y' = 1 + \sin(x) \ln y, \\ y(3) = 4, \end{cases}
$$

has a unique solution.

Solution.

$$
y' = \frac{1 + \sin(x) \ln y}{\sqrt{x^2 - 4}} = f(x, y).
$$

$$
y' = \frac{1}{\sqrt{x^2 - 4}} + \frac{\sin x}{\sqrt{x^2 - 4}} \ln y, \quad y > 0 \text{ and } |x| > 2,
$$

[Introduction](#page-2-0)

The Linear

$$
\frac{\partial f}{\partial y} = \frac{\sin x}{\sqrt{x^2 - 4}} \frac{1}{y}.
$$

Then f and $\frac{\partial f}{\partial y}$ are continuous on

$$
R = \{(x, y) \in \mathbb{R}^2, |x| > 2, y > 0\}
$$

= \{(x, y), x > 2, y > 0\} \cup \{(x, y), x < -2, y > 0\}.

[Introduction](#page-2-0)

[Solving Some](#page-39-0)

The Linear

But the point $(3, 4) \in R_1 = \{(x, y), x > 2, y > 0\}$, then the largest region in xy -plane for which the IVP has a unique solution is R_1 . If we take any rectangular R_2 with center (3,4) such that $R_2 \subset R_1$, then the IVP has also a unique solution, but R_2 is not the largest region.

[First Order](#page-0-0) Differential Equations Mongi BLEL

[Introduction](#page-2-0)

The Linear

Determine the largest region for which the following initial value problem admits a unique solution.

$$
\begin{cases}\n\ln(x-2)\frac{dy}{dx} = \sqrt{y-2},\\
y(\frac{5}{2}) = 4.\n\end{cases}
$$

[First Order](#page-0-0) Differential **Equations** Mongi BLEL

[Introduction](#page-2-0)

The Linear

Find the largest region of the xy - plane for which the following initial value problem has a unique solution

$$
\begin{cases}\n\sqrt{\frac{x}{y}}y' = \cos(x+y), & y \neq 0, \\
y(1) = 1.\n\end{cases}
$$

.

Solution.

We have

$$
y' = \cos(x+y)\left(\frac{x}{y}\right)^{\frac{-1}{2}} = f(x, y).
$$

Then

$$
\frac{\partial f}{\partial y} = -\sin(x+y)\left(\frac{x}{y}\right)^{-1/2} - \frac{1}{2}\cos(x+y)\left(\frac{x}{y}\right)^{-3/2}\left(\frac{-x}{y^2}\right).
$$

[Introduction](#page-2-0)

The Linear

So f and
$$
\frac{\partial f}{\partial y}
$$
 are continuous on $R = \left\{ (x, y), \frac{x}{y} > 0 \right\}$, or

$$
R = \{(x,y), x < 0 \text{ and } y < 0\} \cup \{(x,y), x > 0 \text{ and } y > 0\}.
$$

But

$$
(1,1)\in R_1=\{(x,y), x>0, y>0\}.
$$

Then the largest region for which the given (IVP) has a unique solution is R_1 .

Exercises

[First Order](#page-0-0) Differential Equations Mongi BLEL

[Introduction](#page-2-0)

[Solving Some](#page-39-0)

1 Determine and sketch the largest region of the xy−plane for which the following initial value problems have a unique solution

$$
\begin{cases} \frac{dy}{dx} = \frac{y+2x}{y-2x}, \\ y(1) = 0. \end{cases}
$$

In problems 2-10, determine a region of the xy -plane for which the given differential equations would have a unique solution whose graph passes through a point (x_0, y_0) in the region.

[Introduction](#page-2-0)

The Linear

2
$$
\frac{dy}{dx} = y^{\frac{2}{3}}
$$
.
\n3 $\frac{dy}{dx} = \sqrt{xy}$.
\n4 $x \frac{dy}{dx} = y^{\frac{1}{3}}$.
\n5 $\frac{dy}{dx} - \ln y = \sqrt{x}$.
\n6 $(4 - y^2)y' = x^2y$.
\n7 $\ln(x - 1)y' = \sin^{-1}(y)$.
\n8 $(x^2 + y^2)y' = \sqrt{y}x$.

[Introduction](#page-2-0)

The Linear

$$
\frac{9}{10} (y - x)y' = y + x^2.
$$

$$
\frac{10}{10} (1 + y^3)y' = \tan^{-1}(x).
$$

In problems 11-14 determine whether Theorem [\(1\)](#page-10-0) guarantees that the differential equation

$$
y'=\sqrt{y^2-9}.
$$

possesses a unique solution through the given point.

$$
\begin{array}{c} \mathbf{1} \ (1,4) \\ \mathbf{2} \ (5,3) \\ \mathbf{3} \ (2,-3) \\ \mathbf{4} \ (-1,1) \end{array}
$$

Separable Equations

[First Order](#page-0-0) Differential **Equations** Mongi BLEL

Separable [Equations](#page-21-0)

[Solving Some](#page-39-0)

We begin our study of methods for solving first -order differential equation by studying an equation of the form

$$
M(x, y)dx + N(x, y)dy = 0,
$$

where M and N are two functions of x and y . Some equations of this type are so simple that they can be written in the form

$$
F(x)dx + G(y)dy = 0.
$$

that is, the variables can be separated. The solution can be written immediately. For, it is only a matter of finding a function H such that

$$
dH(x,y)=F(x)dx+G(y)dy=0.
$$

the solution of [\(2\)](#page-21-1) is $H(x, y) = c$ where c is an arbitrary constant.

[First Order](#page-0-0) Differential **Equations**

Mongi BLEL

Separable [Equations](#page-21-0)

[Solving Some](#page-39-0)

The Linear

Find the solution of differential equation

$$
2x(y^2 + y)dx + (x^2 - 1) y dy = 0, \quad y \neq 0.
$$

Solution.

The variables of the equation of [\(23\)](#page-22-0) can be separated as

$$
\frac{2x}{x^2-1}dx = \frac{-1}{y+1}dy, \quad x \neq \pm 1, \text{ and } y \neq -1,
$$

by integrating two sides we have

$$
\ln |x^2 - 1| + \ln |y + 1| = c,
$$

or

$$
\ln |(x^2-1)(y+1)| = c.
$$

Separable [Equations](#page-21-0)

[Solving Some](#page-39-0)

The Linear

What happens when $x = \pm 1$ and when, $y = 0$ or $y = -1$. Going back to the original equation [\(23\)](#page-22-0) we see that four lines $x = \pm 1$, $y = 0$ and $y = -1$ also satisfy the differential equation [\(23\)](#page-22-0). If we relax the restriction $c_1 \neq 0$, the curve $y = -1$ will be

contained in the formula

Separable [Equations](#page-21-0)

[Solving Some](#page-39-0)

$$
y=-1+\frac{c_1}{x^2-1} \ \text{for} \ c_1=0.
$$

However the curves $x = \pm 1$ and $y = 0$ are not contained in the same formula, for any values of c_1 . Sometimes such curves are called *singular solutions* and the one parameter family of solutions

$$
y = -1 + \frac{c_1}{x^2 - 1},
$$

where c_1 is an arbitrary constant, is called the general solution.

[First Order](#page-0-0) **Differential Equations**

Mongi BLEL

Separable [Equations](#page-21-0)

The Linear

Find the solution of the differential equation

$$
(xy + x)dx = (x2y2 + x2 + y2 + 1)dy.
$$

Solution.

We have

$$
x(y + 1)dx = (x2 + 1)(y2 + 1)dy,
$$

hence

$$
\frac{xdx}{x^2+1} = \frac{y^2+1}{y+1}dy, \quad y \neq -1,
$$

then

$$
\frac{xdx}{x^2+1}=\left[(y-1)+\frac{2}{y+1}\right]dy,
$$

Separable [Equations](#page-21-0)

[Solving Some](#page-39-0)

The Linear

by integrating the two sides, we obtain

$$
\ln(x^2+1)-(y-1)^2-\ln(y+1)^4=c.
$$

So the family of curves [\(27\)](#page-26-0) defines implicitly the solution of [\(26\)](#page-25-0). We also see that $y = -1$ satisfies the equation [\(23\)](#page-22-0) but it is not in the family [\(27\)](#page-26-0), then $y = -1$ is a singular solution of [\(26\)](#page-25-0).

[First Order](#page-0-0) Differential **Equations** Mongi BLEL

Separable [Equations](#page-21-0)

The Linear

Solve the initial value problem

$$
\begin{cases}\ne^y \frac{dy}{dx} = \cos(2x) + 2e^y \sin^2(x) - 1, \\
y(\frac{\pi}{2}) = \ln 2.\n\end{cases}
$$

Solution.

By separating the variables we have

$$
e^{y} \frac{dy}{dx} = 2e^{y} \sin^{2}(x) + \cos(2x) - 1,
$$

= $e^{y}(1 - \cos(2x)) - (1 - \cos(2x))$
= $(e^{y} - 1)(1 - \cos(2x)),$

hence

$$
\int \frac{e^y}{e^y-1} dy = \int (1-\cos(2x)) dx.
$$

Consequently

 \cdot

$$
\ln |e^{y}-1| + \frac{\sin(2x)}{2} - x = c,
$$

which is the solution of the differential equation. Now we use the initial condition

$$
x = \frac{\pi}{2}, \ \ y = \ln 2 \quad \implies \ \ \ln 1 + \frac{\sin \pi}{2} - \frac{\pi}{2} = c \implies c = -\frac{\pi}{2},
$$

then the solution of initial value problem is

$$
\ln|e^{y}-1|+\frac{\sin 2x}{2}+\frac{\pi}{2}=0.
$$

Mongi BLEL

[First Order](#page-0-0) Differential **Equations**

Separable [Equations](#page-21-0)

The Linear

Equations with Homogeneous Coefficients

[First Order](#page-0-0) Differential Equations Mongi BLEL

Equations with [Homogeneous](#page-29-0) **Coefficients**

[Solving Some](#page-39-0)

The Linear

Definition

Let f be a function of x and y with domain D. The function f is called homogeneous of degree $k \in \mathbb{R}$ if

 $f(tx, ty) = t^k f(x, y)$ \forall $t > 0$, and \forall $(x, y) \in D$ such that (tx, t)

[First Order](#page-0-0) Differential Equations

Mongi BLEL

Equations with [Homogeneous](#page-29-0) Coefficients

[Solving Some](#page-39-0)

1 It is easy to see that if $M(x, y)$ and $N(x, y)$ are both homogeneous and of the same degree, then the function $M(x,y)$ $\frac{W(X, y)}{W(X, y)}$ is homogeneous of degree zero. We can take as an example the function

$$
f(x,y) = \frac{x^2 - y^2}{x^2 + y^2},
$$

is homogeneous of degree zero.

2 The function

$$
f(x, y) = x - 2y + \sqrt{x^2 + 4y^2},
$$

is homogeneous of degree one.

Equations with [Homogeneous](#page-29-0) **Coefficients**

The Linear

For

$$
f(tx, ty) = tx - 2ty + \sqrt{(tx)^2 + 4(ty)^2}
$$

= |t| [x - 2y + \sqrt{x^2 + 4y^2}],
= tf(x, y).

3 The function $f(x, y) = x \ln x - x \ln y$, is homogeneous of degree one because $f(x, y) = x \ln(\frac{x}{y})$, and

$$
f(tx, ty) = (tx) \ln(\frac{tx}{ty}) = t \left[x \ln(\frac{x}{y}) \right] = tf(x, y).
$$

4 The functions

$$
f(x, y) = x^2 + y^2 + \frac{x - y}{x + y},
$$

and

$$
f(x, y) = 2x - 3y + e^{x-y},
$$

are not homogeneous.

We now consider the differential equation

$$
M(x, y)dx + N(x, y)dy = 0,
$$

where M and N where homogeneous functions of the same degree. To find the solution of the equation [\(4\)](#page-32-0) we put $u = \frac{y}{x}$ $\frac{y}{x}$, $x \neq 0$ or $u = \frac{x}{y}$ $\frac{x}{y}$, $y \neq 0$. Then the differential equation transforms to another equation with separable variables that we can solve by the method of section (2.2).

Equations with [Homogeneous](#page-29-0) Coefficients

[Solving Some](#page-39-0)

The Linear

[First Order](#page-0-0) Differential Equations

Mongi BLEL

Equations with [Homogeneous](#page-29-0) **Coefficients**

[Solving Some](#page-39-0)

The Linear

Solve the differential equation

$$
(x2 - xy + y2)dx - xydy = 0.
$$

Solution.

The coefficients in [\(34\)](#page-33-0) are both homogeneous and of degree two in x and y. Let $u = \frac{y}{x}$ $\frac{y}{x}$, $x \neq 0$, then

$$
y = ux \quad \implies \quad dy = udx + xdu,
$$

and we have

$$
(x2 - x2u + x2u2)dx - x2u(udx + xdu) = 0.
$$

We divide this equation by x^2 to obtain

$$
(1-u+u^2)dx-u(udx+xdu)=0,
$$

or

$$
(1-u)dx-xudu=0.
$$

Hence we separate the variables to get

$$
\frac{dx}{x} + \frac{udu}{u-1} = 0, \quad u \neq 1,
$$

or

$$
\frac{dx}{x} + \left[1 + \frac{1}{u-1}\right] du = 0,
$$

a family of solutions is seen to be

$$
\ln |x| + u + \ln |u - 1| = \ln |c|, c \neq 0.
$$

or

$$
x(u-1)e^u=c_1, \quad x\neq 0, u\neq 1 \text{ and } c_1\neq 0.
$$

[Homogeneous](#page-29-0)

Equations with

Coefficients

The Linear

[First Order](#page-0-0) Differential **Equations**

Mongi BLEL

Equations with [Homogeneous](#page-29-0) **Coefficients**

[Solving Some](#page-39-0)

The Linear

In terms of the original variables, these solutions are given by

$$
x(\frac{y}{x}-1)\exp(\frac{y}{x})=c_1,
$$

or

$$
(y-x)\exp(\frac{y}{x}) = c_1, x \neq 0 \text{ and } y \neq x.
$$

We see that $y = x$ is also is solution of the equation [\(34\)](#page-33-0) and $y = x$ satisfies [\(36\)](#page-35-0) for $c_1 = 0$. Then the family of solutions of the DE [\(34\)](#page-33-0) is given by

$$
(y-x)\exp(\frac{y}{x})=c_1, x\neq 0
$$
 and $c_1 \in \mathbb{R}$.
[First Order](#page-0-0) **Differential Equations** Mongi BLEL

Equations with [Homogeneous](#page-29-0) **Coefficients**

The Linear

Solve the differential equation

$$
\frac{dy}{dx}+\frac{3xy+y^2}{x^2+xy}=0, \ \ x\neq 0 \ \ \text{and} \ \ y\neq -x.
$$

[First Order](#page-0-0) Differential Equations Mongi BLEL

Equations with [Homogeneous](#page-29-0) **Coefficients**

The Linear

Solve the initial value problem

$$
ydx + x\left(\ln\frac{x}{y} - 1\right)dy = 0, \quad y(1) = e.
$$

Solution.

The coefficients of the differential equation are homogeneous with degree one. So we can put $u = \frac{x}{y}$ $\frac{x}{y}$ then

$$
x = yu \implies dx = ydu + udy,
$$

[First Order](#page-0-0) **Differential Equations** Mongi BLEL

Equations with [Homogeneous](#page-29-0) **Coefficients**

The Linear

Find the solution of the differential equation

$$
x\frac{dy}{dx}-y=\sqrt{x^2+y^2}, \ \ x>0.
$$

Solving Some Differential Equations by Using Appropriate Substitution

[First Order](#page-0-0) Differential Equations

Mongi BLEL

[Solving Some](#page-39-0) Differential Equations by Using Appropriate Substitution

The Linear

If we have a differential equation of the form

 $\frac{dy}{dx} = f(Ax + By).$

We substitute

 $u = Ax + By$,

then

$$
\frac{du}{dx} = A + B\frac{dy}{dx}.
$$

[First Order](#page-0-0) **Differential Equations**

Mongi BLEL

[Solving Some](#page-39-0) **Differential** Equations by Using Appropriate Substitution

The Linear

Find the solution of the differential equation

$$
\frac{dy}{dx} = (-2x + y)^2 - 7.
$$

Solution.

Let

then

and

$$
u=-2x+y,
$$

$$
u'=-2+\frac{dy}{dx},
$$

$$
\frac{dy}{dx} = u' + 2 = u^2 - 7,
$$

[Solving Some](#page-39-0) Differential Equations by Using Appropriate Substitution

The Linear

or

$$
\frac{du}{dx} = u^2 - 9 \implies \frac{1}{6} \int \frac{1}{u - 3} du - \frac{1}{6} \int \frac{1}{u + 3} du = dx, \ u \neq \pm 3,
$$

so

$$
\ln\left|\frac{u-3}{u+3}\right| - 6x = c,
$$

then the solutions of the differential equation [\(41\)](#page-40-0) is given by

 $\ln \Bigg|$ $-2x + y - 3$ $-2x + y + 3$ $\Big|-6x=c$, where *c* is an arbitrary constant.

[First Order](#page-0-0) Differential Equations Mongi BLEL

[Solving Some](#page-39-0) **Differential** Equations by Using Appropriate Substitution

Solve the differential equation by using an appropriate substitution

$$
\frac{dy}{dx}=\frac{1-4x-4y}{x+y}, \ \ x+y\neq 0.
$$

Solution.

We see that the two straight lines $1 - 4x - 4y = 0$, and $x + y = 0$ are parallel, in this case we put $u = x + y$, hence $y' = u' - 1$, and we have $\frac{dy}{dx} = \frac{1-4u}{u} = \frac{du}{dx} - 1$. Or $\frac{du}{dx} = \frac{1-3u}{u}$ $\frac{u}{u}$, \implies $\frac{u}{1-3u}du = dx$, $u \neq 0$ and $1-3u \neq 0$.

[Solving Some](#page-39-0) Differential Equations by Using Appropriate Substitution

The Linear

Consequently

$$
\frac{-1}{3}\int\left(1-\frac{1}{1-3u}\right)du=\int dx,
$$

$$
+\frac{u}{3}+\frac{1}{9}\ln|1-3u|+x=c,
$$

then the solutions of the differential equation [\(43\)](#page-42-0) is given by

 \overline{a}

$$
\frac{x+y}{3} + \frac{1}{9} \ln |1 - 3x - 3y| + x = c,
$$

where c is an arbitrary constant.

[First Order](#page-0-0) Differential **Equations** Mongi BLEL

[Solving Some](#page-39-0) **Differential** Equations by Using Appropriate Substitution

The Linear

Solve the differential equation by using an appropriate substitution

$$
\frac{dy}{dx} = \frac{x - y - 3}{x + y - 1}, \ \ x + y - 1 \neq 0.
$$

Solution.

We see that the two straight lines $x - y - 3 = 0$, and $x + y - 1 = 0$, are not parallel, in this case we find the point of intersection which is $(2, -1)$ and we put $x - 2 = u$, $y + 1 = v$. Or

$$
x = u + 2, y = v - 1, \implies dx = du, dy = dv,
$$

then
$$
\frac{dv}{du} = \frac{u+2-(v-1)-3}{u+2+(v-1)-1} = \frac{u-v}{u+v}
$$
.

[First Order](#page-0-0) Differential **Equations**

Mongi BLEL

[Solving Some](#page-39-0) Differential Equations by Using Appropriate Substitution

The Linear

So, we have the homogeneous differential equation

$$
\frac{dv}{du}=\frac{u-v}{u+v}.
$$

Hence we put $\frac{v}{u} = t$, where $u \neq 0$, then $v = ut$, and

$$
\frac{dv}{du}=t+u\frac{dt}{du}.
$$

So we deduce that

$$
u\frac{dt}{du} = \frac{1-t}{1+t} - t = \frac{1-2t-t^2}{1+t}.
$$

Or

$$
\int \frac{du}{u} = \int \frac{1+t}{1-2t-t^2} dt, \ \ 1-2t-t^2 \neq 0,
$$

[Solving Some](#page-39-0) **Differential** Equations by Using Appropriate Substitution

The Linear

$$
\ln|u| + \frac{1}{2}\ln|1 - 2t - t^2| = c,
$$

$$
\ln\left[u^2\left|1 - 2\frac{v}{u} - \frac{v^2}{u^2}\right|\right] = 2c,
$$

$$
u^2 - 2vu - v^2 = c_1, \quad c_1 = \pm e^{2c}.
$$

 \overline{a}

Then the solution of the differential equation [\(45\)](#page-44-0) is given by

$$
(x-2)^2-2(x-2)(y+1)-(y+1)^2 = c_1
$$
, where $c_1 \neq 0$ is an arbitrary

[First Order](#page-0-0) Differential **Equations** Mongi BLEL

[Solving Some](#page-39-0) **Differential** Equations by Using Appropriate Substitution

The Linear

Solve the differential equation by using an appropriate substitution

$$
\frac{dy}{dx}=\frac{y(1+xy)}{x(1-xy)}, x>0, y>0 \text{ and } xy \neq 1.
$$

Solution.

We can solve this differential equation by using the substitution $u = xy$ or $y = \frac{u}{x}$ $\frac{u}{x}$ then

$$
x\frac{dy}{dx}+y=\frac{du}{dx},
$$

hence

$$
x\frac{dy}{dx} = \frac{y(1+xy)}{(1-xy)}
$$

[Solving Some](#page-39-0) **Differential** Equations by Using Appropriate Substitution

The Linear

$$
\frac{du}{dx} - y = \frac{y(1+xy)}{(1-xy)}
$$

$$
\frac{du}{dx} - \frac{u}{x} = \frac{u}{x}(\frac{1+u}{1-u})
$$

$$
\frac{du}{dx} = \frac{2u}{x(1-u)}.
$$

By separating the variables we have

$$
\frac{1}{2}\int(\frac{1}{u}-1)du=\int\frac{dx}{x},
$$

 $\overline{ }$

[Solving Some](#page-39-0) **Differential** Equations by Using Appropriate Substitution

The Linear

$$
\ln u - u - \ln x^2 = c \implies \frac{u}{x^2} = e^u c_1, \quad c_1 = e^c,
$$

then the solution of the differential equation [\(48\)](#page-47-0) is given by

$$
\frac{y}{x} = e^{xy}c_1
$$
, where $c_1 \neq 0$ is an arbitrary constant.

Exercises

[First Order](#page-0-0) Differential Equations Mongi BLEL

[Solving Some](#page-39-0) **Differential** Equations by Using Appropriate Substitution

In exercises 1 through 11, obtain a family of solutions

- 1 $3(3x^2 + y^2)dx 2xydy = 0.$
- 2 $(x y)dx + (2x + y)dy = 0.$ $3x^2y' = 4x^2 + 7xy + 2y^2$.
- 4 $(x y)(4x + y)dx + x(5x y)dy = 0.$
	- $5 x(x^2+y^2)(ydx-xdy) + y^6 dy = 0.$

[Solving Some](#page-39-0) **Differential** Equations by Using Appropriate **Substitution**

The Linear

6
$$
\left[x \csc \left(\frac{y}{x}\right) - y\right] dx + x dy = 0.
$$

\n7 $x dx + \sin^2\left(\frac{y}{x}\right) \left[y dx - x dy\right] = 0.$
\n8 $\left(x - y \ln y + y \ln x\right) dx + x \left(\ln y - \ln x\right) dy = 0.$
\n9 $\frac{dy}{dx} = \frac{x + 3y}{3x + y}.$
\n10 $-y dx + \left(x + \sqrt{xy}\right) dy = 0.$
\n11 $x \frac{dy}{dx} = y + \sqrt{x^2 - y^2}, \quad x > 0.$

[Solving Some](#page-39-0) **Differential** Equations by Using Appropriate Substitution

The Linear

In exercises 12 through 18, find the solution of the initial value problem (IVP)

[Solving Some](#page-39-0) **Differential** Equations by Using Appropriate **Substitution**

The Linear

15
$$
\begin{cases} y^2 dx + (x^2 + 3xy + 4y^2) dy = 0, \\ y(2) = 1. \end{cases}
$$

\n**16**
$$
\begin{cases} y(x^2 + y^2) dx + x(3x^2 - 5y^2) dy = 0, \\ y(2) = 1. \end{cases}
$$

\n**17**
$$
\begin{cases} (x + ye^{\frac{y}{x}}) dx - xe^{\frac{y}{x}} dy = 0, \\ y(1) = 0. \end{cases}
$$

¹⁸

[Solving Some](#page-39-0) **Differential** Equations by Using Appropriate Substitution

The Linear

$$
\begin{cases} (x^2 + 2y^2) \frac{dx}{dy} = xy, \\ y(-1) = 1. \end{cases}
$$

19 Prove that by using the substitution $y = ux$, you can solve any equation of the form

$$
yn f(x) dx + H(x, y)(y dx - x dy) = 0,
$$

where $H(x, y)$ is homogeneous in x and y.

20 If F is homogeneous of degree k in x and y, F can be written in the form

[Solving Some](#page-39-0) **Differential** Equations by Using Appropriate Substitution

$$
F=x^k\varphi\left(\frac{y}{x}\right), x>0,
$$

where φ is a function can be determined from F. In exercises 23 through 31, solve the given differential equation by using an appropriate substitution.

$$
\frac{21}{dx} \frac{dy}{dx} = (x + y + 1)^2.
$$

22 $\frac{dy}{dx} = \tan^2(x + y).$
23 $\frac{dy}{dx} = 2 + \sqrt{y - 2x + 3}.$

[Solving Some](#page-39-0) **Differential** Equations by Using Appropriate **Substitution**

The Linear

24
$$
\frac{dy}{dx} = 1 + e^{y-x+5}
$$
.
\n25 $\frac{dy}{dx} = \frac{1-x-y}{x+y}$.
\n26 $(x + 2y - 4)dx - (2x + y - 5)dy = 0$.
\n27 $(2x + 3y - 1)dx + (2x + 3y + 2)dy = 0$.
\n28 $x \frac{dy}{dx} = y \ln(xy)$.
\n29 $\frac{dy}{dx} = \frac{2y}{x} + \cos^2(\frac{y}{x^2})$, $x \neq 0$. (Hint put $u = \frac{y}{x^2}$).

Exact Differential Equations

[First Order](#page-0-0) Differential Equations Mongi BLEL

[Solving Some](#page-39-0)

Exact **[Differential](#page-57-0) Equations**

The Linear

A differential equation of the form

$$
M(x, y)dx + N(x, y)dy = 0,
$$

is called *exact* if there is a function F of x and y such that

$$
dF(x, y) = M(x, y)dx + N(x, y)dy = 0.
$$

Recall that the total differential of a function F of x and y is given by

$$
dF = \frac{\partial F}{\partial x}dx + \frac{\partial F}{\partial y}dy,
$$

provided that the partial derivatives of the function F with respect to x and y exist. If $Eq(5)$ $Eq(5)$ is exact, then (because of [\(5\)](#page-57-2) and [\(5\)](#page-57-1)) it is equivalent to

Exact **[Differential](#page-57-0)** Equations

The Linear

$$
dF=0.
$$

Thus, the function F is constant and the solution of the differential equation [\(5\)](#page-57-1) is given by $F(x, y) = C$.

Exact **[Differential](#page-57-0)** Equations

The Linear

Theorem

If M, N, $\frac{\partial M}{\partial y}$ $\frac{\partial M}{\partial y}$ and $\frac{\partial N}{\partial x}$ are continuous on a region R in xy $-$ plane, then the differential equation [\(5\)](#page-57-1) is exact if and only if

$$
\frac{\partial M}{\partial y} = \frac{\partial N}{\partial x} \quad \text{on } R.
$$

[First Order](#page-0-0) Differential Equations Mongi BLEL

Exact **[Differential](#page-57-0)** Equations

The Linear

Prove that the following differential equations are exact and find their solutions

$$
(2x3 - xy2 - 2y + 3)dx - (x2y + 2x)dy = 0.
$$

Solution

Here

$$
\frac{\partial M}{\partial y} = -2xy - 2 = \frac{\partial N}{\partial x},
$$

Exact **[Differential](#page-57-0)** Equations

The Linear

so Eq [\(61\)](#page-60-0) is exact. Then there exists a function F of x and y such that

$$
\frac{\partial F}{\partial x} = 2x^3 - xy^2 - 2y + 3.
$$

and

$$
\frac{\partial F}{\partial y} = -(x^2y + 2x).
$$

From $Eq(62)$ $Eq(62)$ we have

$$
F(x,y) = \int (2x^3 - xy^2 - 2y + 3) dx = \frac{1}{2}x^4 - \frac{1}{2}x^2y^2 - 2yx + 3x + g(y),
$$

Exact [Differential](#page-57-0) Equations

The Linear

where g will be determined from Eq [\(62\)](#page-61-1). The latter yields

$$
-x2y - 2x + g'(y) = -x2y - 2x,g'(y) = 0.
$$

Therefore $g(y) = C$, then the solution of the differential equation [\(61\)](#page-60-0) is defined implicitly by

$$
\frac{1}{2}x^4 - \frac{1}{2}x^2y^2 - 2yx + 3x + C = 0.
$$

[First Order](#page-0-0) **Differential Equations** Mongi BLEL

Exact **[Differential](#page-57-0)** Equations

The Linear

$$
\[\cos x \ln(2y-8) + \frac{1}{x}\] dx + \frac{\sin x}{y-4} dy = 0, \ \ x \neq 0, \text{ and } y > 4.
$$

Solution.

Here

$$
\frac{\partial M}{\partial y} = \cos x \frac{2}{2y - 8} = \cos x \cdot \frac{1}{y - 4} = \frac{\partial N}{\partial x}.
$$

Exact **[Differential](#page-57-0)** Equations

The Linear

Thus, Eq [\(64\)](#page-63-0) is exact, then there exists a function F of x and v such that

$$
\frac{\partial F}{\partial x} = M = \cos x \ln(2y - 8) + \frac{1}{x}.
$$

[Solving Some](#page-39-0)

Exact **[Differential](#page-57-0)** Equations

The Linear

$$
\frac{\partial F}{\partial y} = N = \frac{\sin x}{y - 4}.
$$

From Eq [\(66\)](#page-65-0) we have $F(x, y) = \int \frac{\sin x}{x}$ $\frac{\sinh(x)}{y-4}$ dy = sin x ln(y – 4) + g(x), where the function g will be determined by $Eq(65)$ $Eq(65)$

$$
\frac{\partial F}{\partial x} = \cos x \ln(y-4) + g'(x)
$$

= cos x ln(2y - 8) + $\frac{1}{x}$
= cos x ln 2 + cos x ln(y - 4) + $\frac{1}{x}$,

hence

Exact **[Differential](#page-57-0)** Equations

The Linear

$$
g'(x) = \frac{1}{x} + \cos x \ln 2
$$
 or $g(x) = \ln |x| + \sin x \ln 2 + C$,

so the solution of the differential equation [\(62\)](#page-61-0) is defined implicitly by

$$
F(x, y) = \sin x \ln(y - 4) + \ln|x| + \sin x \ln 2 + C = 0,
$$

$$
F(x, y) = \sin x \ln(2y - 8) + \ln|x| + C = 0.
$$

[First Order](#page-0-0) **Differential** Equations Mongi BLEL

Exact **[Differential](#page-57-0)** Equations

The Linear

$$
(e^{2y} - y \cos xy)dx + (2xe^{2y} - x \cos xy + 2y)dy = 0, \ \ y \neq 0.
$$

Solution. We have

$$
\frac{\partial M}{\partial y} = 2e^{2y} + xy \sin xy - \cos xy = \frac{\partial N}{\partial x}.
$$

Then Eq [\(68\)](#page-67-0) is exact and there exists a function F of x and y such that

$$
\frac{\partial F}{\partial x} = M = e^{2y} - y \cos xy.
$$

Exact **[Differential](#page-57-0)** Equations

The Linear

$$
\frac{\partial F}{\partial y} = N = 2xe^{2y} - x\cos xy + 2y.
$$

Now from $Eq(68)$ $Eq(68)$ we deduce that

$$
F(x, y) = xe^{2y} - \sin xy + g(y),
$$

where the function g will be determined from $Eq(69)$ $Eq(69)$

$$
\frac{\partial F}{\partial y} = 2xe^{2y} - x\cos xy + g'(y) = 2xe^{2y} - x\cos xy + 2y,
$$

hence

Exact **[Differential](#page-57-0)** Equations

The Linear

$$
g'(y) = 2y
$$
 or $g(y) = y^2 + C$,

So the solution of the differential equation [\(68\)](#page-67-0) is defined implicitly by

$$
F(x, y) = xe^{2y} - \sin xy + y^2 + C = 0.
$$

[First Order](#page-0-0) **Differential** Equations Mongi BLEL

Exact **[Differential](#page-57-0)** Equations

The Linear

Solve the initial value problem (IVP)

$$
\begin{cases}\n\frac{dy}{dx} = \frac{xy^2 - \cos x \sin x}{y(1 - x^2)}, & y \neq 0 \text{ and } x \neq \pm 1, \\
y(0) = 2.\n\end{cases}
$$

form

Solution. The differential equation [\(71\)](#page-70-0) can be written in the

$$
y(1 - x^2)dy + (-xy^2 + \cos x \sin x)dx = 0.
$$

Exact **[Differential](#page-57-0)** Equations

The Linear

We have

$$
\frac{\partial M}{\partial y} = \frac{\partial N}{\partial x} = -2xy,
$$

then Eq [\(71\)](#page-70-0) is exact and there exists a function F of x and y such that

$$
\frac{\partial F}{\partial x} = M = -xy^2 + \cos x \sin x.
$$
Exact **[Differential](#page-57-0)** Equations

The Linear

$$
\frac{\partial F}{\partial y} = N = y(1 - x^2).
$$

Now from $Eq(72)$ $Eq(72)$ we have

$$
F(x, y) = -\frac{1}{2}x^2y^2 + \frac{1}{2}\sin^2(x) + g(y),
$$

where g will be determined from $Eq(73)$ $Eq(73)$

$$
\frac{\partial F}{\partial y} = -x^2y + g'(y) = y - yx^2,
$$

hence

$$
g'(y) = y
$$
 or $g(y) = \frac{1}{2}y^2 + C$,

Exact **[Differential](#page-57-0)** Equations

The Linear

So the solution of the differential equation in [\(71\)](#page-70-0) is defined implicitly by

$$
F(x,y) = -\frac{1}{2}x^2y^2 + \frac{1}{2}\sin^2(x) + \frac{1}{2}y^2 + C = 0.
$$

Exact [Differential](#page-57-0) Equations

The Linear

Now from the initial condition $y(0) = 2$, we deduce that $C = -2$, hence the solution of the (IVP) is given by the curve

$$
-\frac{1}{2}x^2y^2 + \frac{1}{2}\sin^2(x) + \frac{1}{2}y^2 - 2 = 0.
$$

Exercises

[First Order](#page-0-0) Differential Equations Mongi BLEL

[Solving Some](#page-39-0)

Exact **[Differential](#page-57-0) Equations**

Test each of the following equations for exactness and solve it. If some of the equations are not exact, then use the appropriate method to solve them.

1 $(6x+y^2)dx + y(2x-3y)dy = 0.$ $2(2xy-3x^2)dx+(x^2+y)dy=0.$ $3 \left(y^2 - 2xy + 6x \right) dx - \left(x^2 - 2xy + 2 \right) dy = 0.$ 4 $(x - 2y)dx + 2(y - x)dy = 0.$ 5 $(2xy + y)dx + (x^2 - x)dy = 0.$

Exact **[Differential](#page-57-0)** Equations

The Linear

6
$$
(1 + y^2)dx + (x^2y + y)dy = 0
$$
.
\n7 $(1 + y^2 + xy^2)dx + (x^2y + y + 2xy)dy = 0$.
\n8 $(2xy - \tan y)dx + (x^2 - x\sec^2 y)dy = 0$.
\n9 $x(3xy - 4y^3 + 6)dx + (x^3 - 6x^2y^2 - 1)dy = 0$.

Exact **[Differential](#page-57-0)** Equations

The Linear

10
$$
(xy^2 + y - x)dx + x(xy + 1)dy = 0
$$
.
\nSolve the following initial value problems
\n**11**
$$
\begin{cases}\n(x - y)dx + (-x + y + 2)dy = 0, \\
y(1) = 1.\n\end{cases}
$$

Integrating Factors

[First Order](#page-0-0) Differential Equations Mongi BLEL

[Integrating](#page-78-0) Factors

The Linear

Consider the differential equation

$$
M(x, y)dx + N(x, y)dy = 0,
$$

where M , N , $\frac{\partial M}{\partial x}$ $\frac{\partial M}{\partial y},$ and $\frac{\partial N}{\partial x}$ are continuous on a certain region R in xy-plane. Suppose that $Eq(6)$ $Eq(6)$ is not exact, that is

$$
\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial x} \text{ on } R.
$$

[Solving Some](#page-39-0)

[Integrating](#page-78-0) **Factors**

The Linear

Definition

A function h of x and y is called an integrating factor of Eq [\(6\)](#page-78-1) if the differential equation

 $(h M)dx + (h N) dy = 0,$

is exact, that is

$$
\frac{\partial (hM)}{\partial y} = \frac{\partial (hN)}{\partial x} \text{ on } R,
$$

where $h(x, y) \neq 0$ for all $(x, y) \in R$.

Since (2) is exact, we can solve it, and its solutions will also satisfy the differential equation [\(6\)](#page-78-1).

[Solving Some](#page-39-0)

[Integrating](#page-78-0) **Factors**

The Linear

As $h = h(x, y)$ is an integrating factor of Eq [\(6\)](#page-78-1), then h satisfies the partial differential equation

$$
N h_x - M h_y = (M_y - N_x) h.
$$

In general, it is very difficult to solve the partial differential Eq [\(81\)](#page-80-0) without some restrictions on the functions M and N of the Eq [\(6\)](#page-78-1). Suppose h is a function of one variable, for example, say that h depends only on x . In this case, $h_x = \frac{dh}{dx}$ dx and $h_v = 0$, so Eq [\(81\)](#page-80-0) can be written as

$$
\frac{dh}{dx}=\frac{M_y - N_x}{N} h.
$$

[Solving Some](#page-39-0)

[Integrating](#page-78-0) **Factors**

The Linear

We are still at an awkward situation if the quotient $\frac{M_y-N_x}{N}$ depends on both x and y . However, if after all obvious algebraic simplifications are made, the quotient $\frac{M_{y}-N_{x}}{N}$ turns out depend solely on the variable x, then $Eq (81)$ $Eq (81)$ is a first -order ordinary differential equation. We can finally determine h because $Eq (81)$ $Eq (81)$ is separable as well as linear. Then we have

$$
h(x)=e^{\int (\frac{My-Nx}{N})dx}.
$$

[Solving Some](#page-39-0)

[Integrating](#page-78-0) **Factors**

The Linear

In like manner, it follows from $Eq(81)$ $Eq(81)$ that if h depends only the variable v , then

$$
\frac{dh}{dy} = \frac{N_x - M_y}{M} \; h.
$$

In this case, if $(N_x - M_y)/M$ is a function of y only, then we can solve $Eq (83)$ $Eq (83)$ for h.

We summarize the results for the differential equation

 $M(x, y)dx + N(x, y)dy = 0.$

[Solving Some](#page-39-0)

[Integrating](#page-78-0) Factors

The Linear

i) If $\frac{M_y - N_x}{N_x}$ is a function of x only, then an integrating factor for $Eq(83)$ $Eq(83)$ is

$$
h(x)=e^{\int \frac{My}{N}-Nx}dx
$$

.

ii) If $\frac{N_x - M_y}{M_x}$ is a function of y only, then an integrating factor for $Eq(83)$ $Eq(83)$ is

$$
h(y)=e^{\int \frac{N_x-M_y}{M}dy}.
$$

Example

[First Order](#page-0-0) Differential Equations Mongi BLEL

[Integrating](#page-78-0) **Factors**

The Linear

Find the solution of the differential equation

$$
xydx + (2x^2 + 3y^2 - 20)dy = 0,
$$

where $x \neq 0$ and $y > 0$. Solution. We have

$$
M = xy
$$
 and $N = 2x^2 + 3y^2 - 20$,

then $M_v = x$ and $N_x = 4x$, so Eq [\(85\)](#page-84-0) is not exact.

But

[Integrating](#page-78-0) **Factors**

The Linear

$$
\frac{M_y - N_x}{N} = \frac{x - 4x}{2x^2 + 3y^2 - 20} = \frac{-3x}{2x^2 + 3y^2 - 20},
$$

so this quotient depends on x and y . But

$$
\frac{N_x - M_y}{M} = \frac{4x - x}{xy} = \frac{3}{y} = g(y),
$$

[Integrating](#page-78-0) **Factors**

The Linear

Then the integrating factor for $Eq(85)$ $Eq(85)$ is

$$
h(y) = e^{\int \frac{N_x - M_y}{M} dy} = e^{\int g(y) dy} = e^{\int \frac{3}{y} dy} = e^{\ln y^3} = y^3.
$$

Then we multiply the equation $Eq(85)$ $Eq(85)$ by

$$
h\left(y\right) =y^{3},
$$

and we obtain

$$
xy^{4}dx + (2x^{2}y^{3} + 3y^{5} - 20y^{3})dy = 0.
$$

This equation is exact, because

$$
M_y=N_x=4xy^3.
$$

[Integrating](#page-78-0) **Factors**

The Linear

So there exists a function F of x and y satisfies

$$
\frac{\partial F}{\partial x} = M = xy^4.
$$

\n
$$
\frac{\partial F}{\partial y} = N = 2x^2y^3 + 3y^5 - 20y^3.
$$

Hence

$$
F(x,y) = \int (xy^4)dx \implies F(x,y) = \frac{1}{2}x^2y^4 + g(y).
$$

But

[Integrating](#page-78-0) **Factors**

The Linear

$$
\frac{\partial F}{\partial y} = 2x^2y^3 + g'(y) = 2x^2y^3 + 3y^5 - 20y^3 \implies g'(y) = 3y^5 - 20y^3,
$$

or

$$
g(y) = \frac{1}{2}y^6 - 5y^4 + C.
$$

Then the solution of the differential equation [\(85\)](#page-84-0) is given by

$$
F(x,y) = \frac{1}{2}x^2y^4 + \frac{1}{2}y^6 - 5y^4 + C = 0.
$$

Example

[First Order](#page-0-0) **Differential Equations** Mongi BLEL

[Integrating](#page-78-0) **Factors**

The Linear

Solve the differential equation :

$$
(4xy + 3y2 - x)dx + x(x + 2y)dy = 0, \ \ x(x + 2y) \neq 0.
$$

Solution. Here

$$
M = 4xy + 3y^2 - x, \ N = x^2 + 2xy,
$$

so

$$
\frac{\partial M}{\partial y} - \frac{\partial N}{\partial x} = 4x + 6y - (2x + 2y) = 2(x + 2y).
$$

Hence

$$
\frac{1}{N}(\frac{\partial M}{\partial y} - \frac{\partial N}{\partial x}) = \frac{2(x+2y)}{x(x+2y)} = \frac{2}{x} = f(x).
$$

Then the integrating factor for $Eq(90)$ $Eq(90)$ is

$$
h(x) = e^{\int f(x)dx} = e^{2\ln|x|} = x^2.
$$

Returning to the original $Eq(90)$ $Eq(90)$, we insert the integrating factor and obtain

$$
(4x3y + 3x2y2 - x3)dx + (x4 + 2x3y)dy = 0,
$$

where we know that $Eq (91)$ $Eq (91)$ must be an exact equation. Let us find the function F of x and y by another method. We can put $Eq(91)$ $Eq(91)$ in the form

[First Order](#page-0-0) Differential **Equations** Mongi BLEL

[Solving Some](#page-39-0)

[Integrating](#page-78-0) **Factors**

The Linear

 \overline{a}

4

[Integrating](#page-78-0) **Factors**

The Linear

$$
(4x3y dx + x4dy) + (3x2y2dx + 2x3dydy) - x3dx = 0,
$$

hence

$$
d (x4y) + d (x3y2) + d (\frac{-1}{4}x4) = d (x4y + x3y2 \frac{-1}{4}x4) = 0,
$$

so

 \sim

 \sim

 \sim

$$
d(F(x,y)) = d(x^4y + x^3y^2 - \frac{1}{4}x^4) = 0 \implies F(x,y) = x^4y + x^3y^2
$$

is the solution of the differential equation [\(90\)](#page-89-0).

Example

[First Order](#page-0-0) **Differential Equations** Mongi BLEL

[Integrating](#page-78-0) **Factors**

The Linear

Solve the differential equation

$$
y(x + y + 1)dx + x(x + 3y + 2)dy = 0, \quad y(x + y + 1 \neq 0.
$$

Solution. Here

$$
M = yx + y^2 + y, N = x^2 + 3xy + 2x,
$$

then

÷.

[Integrating](#page-78-0) **Factors**

The Linear

$$
\frac{\partial M}{\partial y} = x + 2y + 1, \quad \frac{\partial N}{\partial x} = 2x + 3y + 2,
$$

$$
\frac{\partial M}{\partial y} - \frac{\partial N}{\partial x} = -x - y - 1 = -(x + y + 1),
$$

$$
\frac{1}{M}(\frac{\partial N}{\partial x} - \frac{\partial M}{\partial y}) = \frac{(x + y + 1)}{y(x + y + 1)} = \frac{1}{y} = g(y),
$$

so the integrating factor for Eq [\(93\)](#page-92-0) is

$$
h(y) = e^{\int g(y)dy} = e^{\int \frac{dy}{y}} = |y|.
$$

[Integrating](#page-78-0) Factors

The Linear

It follows that if $y > 0$, then $h(y) = y$ and if $y < 0$, we have $h(y) = -y$. In other case Eq [\(93\)](#page-92-0) becomes

$$
(xy2 + y3 + y2)dx + (x2y + 3xy2 + 2xy)dy = 0,
$$

or

$$
(xy2 dx + x2 ydy) + (y3 dx + 3xy2 dy) + (y2 dx + 2xydy) = 0,
$$

$$
d\left(\frac{1}{2}x^2y^2\right) + d\left(xy^3\right) + d\left(xy^2\right) = 0,
$$

$$
d\left(F(x, y) = d\left(\frac{1}{2}x^2y^2 + xy^3 + xy^2\right) = 0,
$$

Then the solution of the differential equation [\(93\)](#page-92-0) is

$$
F(x, y) = \frac{1}{2}x^2y^2 + xy^3 + xy^2 + C = 0.
$$

Example

[First Order](#page-0-0) Differential Equations Mongi BLEL

[Integrating](#page-78-0) **Factors**

The Linear

Find k, $n \in \mathbb{Z}$ such that $h(x, y) = x^k y^n$, is an integrating factor of the differential equation

$$
y(x3 - y)dx + -x(x3 + y)dy = 0, \ x > 0, \ y > 0.
$$

Solution.

$$
(x3y - y2)dx - (x4 + xy)dy = 0,
$$

[Integrating](#page-78-0) **Factors**

The Linear

We have to find k and n such that the equation

$$
(x^{k+3}y^{n+1} - y^{n+2}x^k)dx - (x^{k+4}y^n + x^{k+1}y^{n+1})dy = 0,
$$

is exact, which means that

$$
\frac{\partial M}{\partial y} = (n+1)y^{n}x^{k+3} - (n+2)y^{n+1}x^{k}
$$

$$
= \frac{\partial N}{\partial x} = -(k+4)x^{k+3}y^{n} - (k+1)x^{k}y^{n+1},
$$

hence

[First Order](#page-0-0) Differential Equations Mongi BLEL

[Integrating](#page-78-0) **Factors**

The Linear

$$
(n + k + 5)y^{n}x^{k+3} + (k - n - 1)x^{k}y^{n+1} = 0,
$$

which implies that

$$
\begin{cases} n+k+5=0\\ k-n-1=0 \end{cases} \Longrightarrow n=-3, \text{ and } k=-2.
$$

So the differential equation

$$
(\frac{x}{y^2}-\frac{1}{yx^2})dx+(-\frac{x^2}{y^3}-\frac{1}{xy^2})dy=0,
$$

is exact, and it is easy to see that the solution of $Eq (98)$ $Eq (98)$ is given by

$$
F(x,y) = \frac{x^2}{2y^2} + \frac{1}{xy} + C = 0.
$$

Exercises

[First Order](#page-0-0) **Differential Equations** Mongi BLEL

[Integrating](#page-78-0) **Factors**

The Linear

Solve each of the following equations.

1
$$
(x^2 + y^2 + 1)dx + x(x - 2y)dy = 0
$$
.
\n2 $y(2x - y + 1)dx + x(3x - 4y + 3)dy = 0$.
\n3 $(xy + 1)dx + x(x + 4y - 2)dy = 0$.
\n4 $(2y^2 + 3xy - 2y + 6x)dx + x(x + 2y - 1)dy = 0$.
\n5 $y^2dx + (3xy + y^2 - 1)dy = 0$.
\n6 $2(2y^2 + 5xy - 2y + 4)dx + x(2x + 2y - 1)dy = 0$.
\n7 $y(2x^2 - xy + 10dx + (x - y)dy = 0$.

[Solving Some](#page-39-0)

[Integrating](#page-78-0) **Factors**

The Linear

In problems 8- 12, solve the given differential equation by finding an appropriate integrating factor.

$$
8 (2y^2 + 3x)dx + 2xydy = 0.
$$

$$
9 \cos x \, dx + (1+\frac{2}{y}) \sin x \, dy = 0.
$$

<u>10</u> $(10 - 6y + e^{-3x})dx - 2dy = 0$. **11** $(x^4 + y^4)dx - xy^3dy = 0.$

 $\frac{12}{2}(x^2-y^2+x)dx+2xydy=0.$

¹³

¹⁴

[Integrating](#page-78-0) **Factors**

The Linear

In problems 13 and 14, solve the given initial-value problem by finding an appropriate integrating factor.

$$
\begin{cases}\nxdx + (x^2y + 4y)dy = 0, \\
y(4) = 0.\n\end{cases}
$$

$$
\begin{cases} (x^2 + y^2 - 5)dx = (y + xy)dy, \\ y(0) = 1. \end{cases}
$$

Solve the exercise 15 by two methods.

$$
\frac{15}{2} y(8x-9y)dx + 2x(x-3y)dy = 0.
$$

If Find the value
$$
k
$$
 so that the given differential equation is exact.

$$
(y3 + kxy4 - 2x)dx + (3xy2 + 20x2y3)dy = 0.
$$

The General Solution of Linear Differential Equation

[First Order](#page-0-0) Differential Equations Mongi BLEL

[Solving Some](#page-39-0)

The Linear **[Differential](#page-101-0)** Consider the linear differential equation

$$
\frac{dy}{dx} + P(x)y = Q(x).
$$

Suppose that P and Q are continuous functions on an interval $a < x < b$ and $x = x_0$ is any number in that interval. If y_0 is an arbitrary real number, there exists a unique solution $y = y(x)$ of the differential equation [\(7\)](#page-101-1) which satisfies the initial condition

 $y(x_0) = y_0$.

[Solving Some](#page-39-0)

The Linear **[Differential](#page-101-0)**

Moreover, this solution satisfies $Eq(7)$ $Eq(7)$ throughout the entire interval $a < x < b$. It is easy to see that

$$
h(x)=e^{\int P(x)dx}.
$$

is an integrating factor for $Eq(7)$ $Eq(7)$ and the general solution of Eq (7) is given by

$$
y \; h(x) = \int h(x) \; Q(x) \; dx \; + C.
$$

Since $h(x) \neq 0$ for all $x \in (a, b)$ we can write

$$
y(x) = e^{-\int P(x)dx} \left[\int h(x) Q(x) dx \right] + Ce^{-\int P(x)dx}.
$$

We can choose the constant C so that $y = y_0$ when $x = x_0$.

Example

[First Order](#page-0-0) Differential Equations Mongi BLEL

[Solving Some](#page-39-0)

The Linear **[Differential](#page-101-0)** Find the general solution of the differential equation

$$
(1+x^2)\frac{dy}{dx} + xy + x^3 + x = 0.
$$

Solution. Eq [\(104\)](#page-103-0) can be written in the form $\frac{dy}{dx} + \frac{x}{1+y}$ $\frac{x}{1+x^2}y = -x$.. Then $h(x) = e^{\int \frac{x}{x^2+1} dx} = e^{\ln \sqrt{x^2+1}} = \sqrt{x^2+1}$, so ϵ

$$
y h(x) = y\sqrt{x^2 + 1} = \int h(x) Q(x) dx
$$

= $-\int x\sqrt{x^2 + 1} dx = -\frac{1}{3}(1 + x^2)^{\frac{3}{2}} + C.$

[Solving Some](#page-39-0)

The Linear **[Differential](#page-101-0)** Hence the general solution of $Eq(104)$ $Eq(104)$ is

$$
y(x) = -\frac{1}{3}(x^2 + 1) + \frac{C}{\sqrt{x^2 + 1}}.
$$

The general solution of $Eq(104)$ $Eq(104)$ can be written as the sum of two solutions

$$
y(x)=y_h+y_p,
$$

where $y_h = \frac{C}{\sqrt{2}}$ x^2+1 is the general solution of $\frac{dy}{dx} + \frac{x}{1+y}$ $\frac{x}{1+x^2}$ y = 0, and y_p = $-\frac{1}{3}$ $\frac{1}{3}(x^2+1)$ is a particular solution of the equation $\frac{dy}{dx} + \frac{x}{1+y}$ $\frac{x}{1+x^2}y=-x.$

Example

[First Order](#page-0-0) Differential Equations Mongi BLEL

[Solving Some](#page-39-0)

The Linear **[Differential](#page-101-0)** Find the general solution of the differential equation

$$
2(2xy + 4y - 3)dx + (x + 2)^2 dy = 0, \ \ x \neq -2.
$$

Solution.

 $Eq (106)$ $Eq (106)$ can be written in the form $\frac{dy}{dx}(x+2)^2 + 4y(x+2) = 6$, or $\frac{dy}{dx} + \frac{4}{x+2}$ $\frac{4}{x+2}y = \frac{6}{(x+1)}$ $\frac{c}{(x+2)^2}$.

The Linear [Differential](#page-101-0)

Then
$$
h(x) = e^{\int \frac{4}{x+2} dx} = e^{4 \ln|x+2|} = (x+2)^4
$$
, thus
\n $y h(x) = y (x+2)^4 = \int h(x)Q(x)dx = \int 6(x+2)^2 dx = 2(x+2)^4$

Hence the general solution of Eq [\(106\)](#page-105-0) is

$$
y(x) = \frac{2}{x+2} + C \frac{1}{(x+2)^4}.
$$

Example

[First Order](#page-0-0) Differential Equations Mongi BLEL

[Solving Some](#page-39-0)

The Linear **[Differential](#page-101-0)** Find the initial value problem (IVP)

$$
(y-x+xy \cot x)dx + xdy = 0, \quad 0 < x < \pi,
$$

$$
y(\frac{\pi}{2}) = 0.
$$

Solution.

We have $x\frac{dy}{dx} + y(1 + x \cot x) = x$, or $\frac{dy}{dx} + (\frac{1}{x} + \cot x)y = 1$. Then

$$
h(x) = e^{\int (\frac{1}{x} + \cot x) dx} = e^{\ln x + \ln(\sin x)} = x \sin x.
$$
The Linear [Differential](#page-101-0) So the general solution of $Eq(108)$ $Eq(108)$ is

$$
h(x)y = x \sin x \ y(x) = \int x \sin x \ dx = -x \cos x + \sin x + C,
$$

or

$$
y(x) = -\cot x + \frac{1}{x} + C \frac{1}{x \sin x}
$$

.

Now we use the condition $y(\frac{\pi}{2})$ $(\frac{\pi}{2}) = 0$, to find the constant C. In fact

$$
y(\frac{\pi}{2}) = -(0) + \frac{2}{\pi} + C\frac{2}{\pi} = 0 \Longrightarrow C = -1.
$$

then the solution of the (IVP) (108) is

$$
y(x) = -\cot x + \frac{1}{x} - \frac{1}{x \sin x}.
$$

Example

[First Order](#page-0-0) Differential Equations Mongi BLEL

[Solving Some](#page-39-0)

The Linear **[Differential](#page-101-0)** Find the initial value problem (IVP)

$$
\begin{cases} (x+1)\frac{dy}{dx} + (x+2)y = 2xe^{-x}, & x > -1, \\ y(0) = 1. \end{cases}
$$

Solution. We have $\frac{dy}{dx} + (1 + \frac{1}{x+1})y = \frac{2x}{x+1}$ $\frac{2x}{x+1}e^{-x}$. Then $h(x)=e^{\int (1+\frac{1}{x+1})dx}=e^{x+\ln(x+1)}=(x+1)e^x,$ and the general solution of $Eq(110)$ $Eq(110)$ is

$$
h(x)y = (x + 1)exy = \int h(x)Q(x)dx = \int 2xdx = x2 + C,
$$

or
$$
y(x) = \frac{x^2}{x+1}e^{-x} + C\frac{1}{x+1}e^{-x}
$$
. From the condition
 $y(0) = 1$, we deduce that $y(0) = 0 + C = 1 \implies C = 1$. Hence
the solution of *(IVP)* (110) is

$$
y(x) = \frac{x^2}{x+1}e^{-x} + \frac{1}{x+1}e^{-x}.
$$

Exercises

[First Order](#page-0-0) **Differential Equations** Mongi BLEL

The Linear [Differential](#page-101-0) In exercises 1 through 9, find the general solution.

1
$$
(x^5 + 3y)dx - xdy = 0
$$
.
\n2 $(2xy + x^2 + x^4)dx - (1 + x^2)dy = 0$.
\n3 $((y - \cos^2(x))dx + \cos x dy = 0, \quad 0 < x < \frac{\pi}{2}$.
\n4 $x^2y' + xy = x + 1$.
\n5 $x \frac{dy}{dx} - y = x^2 \sin x$.

-
-
- [Solving Some](#page-39-0)
-
-

- 6 $x^2y' + x(x+2)y = e^x$. 7 $(x+1)\frac{dy}{dx} + (x+2)y = 2xe^{-x}$. 8 $\frac{dy}{dx} - \frac{3}{x-1}y = (x-1)^4$.
	- 9 $y' \frac{x}{1+y}$ $\frac{x}{1+x^2} = -\frac{x}{1+x^2}$ $rac{x}{1+x^2}y$. In exercises 10 through 14, solve the initial value problem.

-
-
-
-
-
-

$$
\begin{array}{c}\n\text{IC} \\
\begin{cases}\ny' - xy = (1 - x^2)e^{\frac{1}{2}x^2}, \\
y(0) = 0.\n\end{cases} \\
\text{II} \\
\begin{cases}\n(1 - x)\frac{dy}{dx} + xy = x(x - 1)^2, \\
y(5) = 24.\n\end{cases}\n\end{array}
$$

$$
\begin{array}{c}\n\mathbf{12} \begin{cases}\n(2x+3)y' = y + (2x+3)^{\frac{1}{2}}, \\
y(-1) = 0.\n\end{cases} \\
\mathbf{18} \begin{cases}\n(3xy+3y-4)dx + (x+1)^2 dy = 0, \\
y(0) = 1.\n\end{cases}\n\end{array}
$$

¹⁴

[Solving Some](#page-39-0)

$$
\begin{cases}\nx(x^2+1)y'+2y=(x^2+1)^3, \\
y(1)=-1.\n\end{cases}
$$

- **15** Solve the differential equation $(x + a)y' = bx ny$, where a, b, and n are constants with $n \neq 0$, $n \neq -1$.
- 16 Solve the equation of exercise [\(110\)](#page-109-0) for the exceptional cases $n = 0$ and $n = -1$.

The Linear [Differential](#page-101-0)

17 In the standard form

$$
dy + Pydx = Qdx.
$$

put $y = vw$, thus

$$
w(dv + Pvdx) + vdw = Qdx.
$$

then, by first choosing v so that

$$
dv + Pvdx = 0,
$$

and later determining w, show how to complete the solution

$$
dy + Pydx = Qdx.
$$

Bernoulli's Equation

[First Order](#page-0-0) Differential Equations Mongi BLEL

The Linear

Bernoulli's equation is a well known differential equation which has the general form

$$
y' + P(x)y = Q(x)y^n,
$$

where $n \in \mathbb{R}$.

[First Order](#page-0-0) Differential Equations

Mongi BLEL

[Solving Some](#page-39-0)

The Linear

- 1 If $n = 0$ then Eq [\(8\)](#page-117-1) is a linear first differential equation and we have discussed before.
- 2 If $n = 1$, Eq [\(8\)](#page-117-1) becomes a differential equation with separable variables, so we solve it.
- 3 Now we suppose that $n \neq 0$ and $n \neq 1$, we suppose also $y \neq 0$ on some interval $I = (a, b)$, then Eq [\(8\)](#page-117-1) can be written in the form

$$
y^{-n}y' + P(x)y^{-n+1} = Q(x).
$$

Now we put $u = y^{-n+1}$, then we have

$$
u' = (-n+1)y^{-n}y',
$$

so Eq (3) becomes
$$
\frac{1}{-n+1}u' + P(x)u = Q(x)
$$
,

or

The Linear

$$
u' + (-n+1)P(x)u = Q(x)(-n+1),
$$

is linear, and can be solved.

Example

[First Order](#page-0-0) **Differential** Equations Mongi BLEL

The Linear

Solve the differential equation

$$
y(6y^2 - x - 1)dx + 2xdy = 0, \quad x > 0.
$$

Solution.

First we write $Eq(121)$ $Eq(121)$ in the form

$$
y' - \frac{x+1}{2x}y = \frac{-3}{x}y^3,
$$

[Solving Some](#page-39-0)

The Linear

so the obtained equation is a Bernoulli equation, where $n = 3$. Now suppose that $y \neq 0$ on some interval $I = (a, b)$, then Eq [\(121\)](#page-120-0) can be written in the form

$$
y'y^{-3} - \frac{x+1}{2x}y^{-2} = \frac{-3}{x},
$$

and put

$$
u = y^{-2} \implies u' = -2y^{-3}y',
$$

hence $Eq(122)$ $Eq(122)$ becomes

$$
u' + \frac{x+1}{x}u = \frac{6}{x}.
$$

This equation is linear and the integrating factor for $Eq(122)$ $Eq(122)$ is

$$
h(x)=e^{\int (1+\frac{1}{x})dx}=xe^x.
$$

The Linear

Then the solution of Eq [\(122\)](#page-121-1) is

$$
xe^x u = 6e^x + C,
$$

so the solution of $Eq(121)$ $Eq(121)$ is

$$
y^2(6+Ce^{-x})=x.
$$

Example

[First Order](#page-0-0) Differential Equations Mongi BLEL

The Linear

Write the differential equation

$$
3(1+x^2)\frac{dy}{dx} = 2xy(y^3-1).
$$

in the form of Bernoulli's equation an solve it, where $y \neq 0$ on some interval $I = (a, b)$.

Solution.

Eq (124) can be written in the form

$$
y' + \frac{2x}{3(x^2+1)}y = \frac{2x}{3(x^2+1)}y^4.
$$

The Linear

So we have Bernoulli's equation with $n = 4$. We divide Eq. (124) by $y⁴$ and we get

$$
y'y^{-4} + \frac{2x}{3(x^2+1)}y^{-3} = \frac{2x}{3(x^2+1)}.
$$

Now we put $u = y^{-3}$, then

$$
u'=-3y^{-4}y',
$$

and Eq [\(125\)](#page-124-0) becomes

$$
u' - \frac{2x}{(x^2+1)}u = -\frac{2x}{(x^2+1)}.
$$

[Solving Some](#page-39-0)

The Linear

 $Eq(125)$ $Eq(125)$ is linear which has an integrating factor $h(x) = \frac{1}{x^2 + 1} \Longrightarrow \frac{1}{x^2 + 1}$ $\frac{1}{x^2+1}u = \frac{1}{x^2+1}$ $\frac{1}{x^2+1} + C$.

Then the solution of $Eq(124)$ $Eq(124)$ is

 $y^3 [1 + (x^2 + 1)C] = 1.$

Example

[First Order](#page-0-0) Differential Equations

Mongi BLEL

[Solving Some](#page-39-0)

The Linear

Find the solution of the initial value problem

$$
\begin{cases} (2y^3 - x^3)dx + 2xy^2 dy = 0, & x > 0, \\ y(1) = 1. \end{cases}
$$

Solution.

The differential equation in the (IVP) [\(127\)](#page-126-0) can be written in the form

$$
y' + \frac{1}{x}y = \frac{x^2}{2}y^{-2}.
$$

So Eq [\(127\)](#page-126-1) is a Bernoulli equation with $n = -2$, and suppose that $y \neq 0$ on some interval $I = (a, b)$. From Eq [\(127\)](#page-126-1) we deduce that

$$
y^2y' + \frac{1}{x}y^3 = \frac{x^2}{2}.
$$

The Linear

Put

$$
u=y^3\implies u'=3y^2y',
$$

hence we have

$$
\frac{1}{3}u' + \frac{1}{x}u = \frac{x^2}{2}.
$$

or

$$
u' + \frac{3}{x}u = \frac{3}{2}x^2.
$$

Eq [\(128\)](#page-127-0) is linear which has an integrating factor $h(x) = x^3$, then the solution of $Eq(128)$ $Eq(128)$ is

$$
ux^3=\frac{1}{4}x^6+C.
$$

The Linear

so the solution of the differential equation is

$$
y^3 = \frac{1}{4}x^3 + \frac{1}{x^3}C.
$$

Now we use the condition $y(1)=1$, then $C=\frac{3}{4}$ $\frac{3}{4}$, so the solution of the (IVP) [\(127\)](#page-126-0) is

$$
y^3 = \frac{1}{4}x^3 + \frac{3}{4x^3}.
$$