First Order Differential Equations

Mongi BLEL

Department of Mathematics King Saud University

January 17, 2024

Table of contents

- Separable Equations
- 2 Equations with Homogeneous Coefficients
- Solving Some Differential Equations by Using Appropriate Substitution
- 4 Exact Differential Equations
- Integrating Factors
- 6 The Linear Differential Equation
- Ø Bernoulli's Equation

Initial-Value Problems

We are often interested in problems in which we seek a solution y(x) of differential equation so that it satisfies prescribed side conditions. that is conditions imposed on the unknown y(x) or its derivatives. On some interval I containing x_0 , the problem

$$\begin{cases} \frac{d^n y}{dx^n} = f(x, y, y', \dots, y^{(n-1)}) \\ y(x_0) = y_0, y'(x_0) = y_1, \dots, y^{(n-1)}(x_0) = y_{n-1}, \end{cases}$$

where $y_0, y_1, \ldots, y_{n-1}$ are arbitrary specified real constants, is called an **initial value problem** (*IVP*). The values y(x) and its first n-1 derivatives at a single point x_0 : $y(x_0) = y_0$, $y'(x_0) = y_1, \ldots, y^{(n-1)}(x_0) = y_{n-1}$ are called **initial conditions.** Special cases: First and second-order (*IVPs*)

$$\begin{cases} \frac{dy}{dx} = f(x, y), \\ y(x_0) = y_0, \end{cases}$$
(1)

$$\begin{cases} \frac{d^2y}{dx^2} = f(x, y, y'), \\ y(x_0) = y_0, \ y'(x_0) = y_1, \end{cases}$$
(2)

are first and second-order initial value problems, respectively.

In this chapter we study several elementary methods for solving first -order differential equations.

Consider the equation of order one

$$F(x, y, y') = 0.$$
 (3)

We suppose that the equation (3), with some conditions, can be written as

$$y' = \frac{dy}{dx} = f(x, y).$$
(4)

The equation (4) can be also written in the form

$$M(x,y)dx + N(x,y)dy = 0,$$

where M and N are two functions of x and y.

Existence Theorem

Theorem

Consider the differential equation of order one

$$\frac{dy}{dx} = f(x, y). \tag{5}$$

We assume that f is defined on a domain $\Omega \subset \mathbb{R}^2$ which contain (x_0, y_0) . Suppose also that f and $\frac{\partial f}{\partial y}$ are continuous on Ω . Then there exist h > 0 and a unique solution y of this differential equation defined on the interval $(x_0 - h, x_0 + h)$ and $y(x_0) = y_0$.

Example

Find the largest region of the xy-plane for which the initial value problem

$$\begin{cases} \sqrt{x^2 - 4}y' = 1 + \sin(x) \ln y, \\ y(3) = 4, \end{cases}$$

has a unique solution.

$$y' = \frac{1 + \sin(x) \ln y}{\sqrt{x^2 - 4}} = f(x, y).$$

$$\frac{\partial f}{\partial y} = \frac{\sin x}{\sqrt{x^2 - 4}} \frac{1}{y}.$$

Then f and $\frac{\partial f}{\partial y}$ are continuous on

$$R = \{(x,y) \in \mathbb{R}^2, |x| > 2, y > 0\}$$

= $\{(x,y), x > 2, y > 0\} \cup \{(x,y), x < -2, y > 0\}.$

But the point $(3,4) \in R_1 = \{(x,y), x > 2, y > 0\}$, then the largest region in *xy*-plane for which the *IVP* has a unique solution is R_1 .

Determine the largest region for which the following initial value problem admits a unique solution.

$$\begin{cases} \ln(x-2)\frac{dy}{dx} = \sqrt{y-2}, \\ y(\frac{5}{2}) = 4. \end{cases}$$

Example

Find the largest region of the xy- plane for which the following initial value problem has a unique solution

$$\left\{ egin{array}{l} \sqrt{rac{x}{y}}y'=\cos(x+y), \ y
eq 0, \ y(1)=1. \end{array}
ight.$$

We have

$$y' = \cos(x+y)(\frac{x}{y})^{\frac{-1}{2}} = f(x,y).$$

Then

$$\frac{\partial f}{\partial y} = -\sin(x+y)(\frac{x}{y})^{\frac{-1}{2}} - \frac{1}{2}\cos(x+y)(\frac{x}{y})^{\frac{-3}{2}}(\frac{-x}{y^2}).$$

.

So
$$f$$
 and $\frac{\partial f}{\partial y}$ are continuous on $R = \left\{ (x, y), \frac{x}{y} > 0 \right\}$, or

$$R = \{(x, y), x < 0 \text{ and } y < 0\} \cup \{(x, y), x > 0 \text{ and } y > 0\}.$$

But

$$(1,1) \in R_1 = \{(x,y), x > 0, y > 0\}.$$

Then the largest region for which the given (IVP) has a unique solution is R_1 .

 Determine and sketch the largest region of the xy-plane for which the following initial value problems have a unique solution

$$\begin{cases} \frac{dy}{dx} = \frac{y+2x}{y-2x}, \\ y(1) = 0. \end{cases}$$

In problems 2- 10, determine a region of the xy-plane for which the given differential equations would have a unique solution whose graph passes through a point (x_0, y_0) in the region.

2
$$\frac{dy}{dx} = y^{\frac{2}{3}}$$
.
3 $\frac{dy}{dx} = \sqrt{xy}$.
4 $x \frac{dy}{dx} = y^{\frac{1}{3}}$.
5 $\frac{dy}{dx} - \ln y = \sqrt{x}$.
6 $(4 - y^2)y' = x^2y$.
7 $\ln(x - 1)y' = \sin^{-1}(y)$.
8 $(x^2 + y^2)y' = \sqrt{y} x$.

9
$$(y - x)y' = y + x^2$$
.

$$y'=\sqrt{y^2-9}.$$

possesses a unique solution through the given point.

Equations with Homogeneous Coefficients Solving Some Differential Equations by Using Appropriate Substi Exact Differential Equations Integrating Factors The Linear Differential Equation Bernoulli's Equation

Separable Equations

We begin our study of methods for solving first -order differential equation by studying an equation of the form

$$M(x,y)dx + N(x,y)dy = 0,$$

where M and N are two functions of x and y. Some equations of this type are so simple that they can be written in the form

$$F(x)dx + G(y)dy = 0.$$
 (6)

that is, the variables can be separated. The solution can be written immediately. For, it is only a matter of finding a function H such that

$$dH(x,y) = F(x)dx + G(y)dy = 0.$$

the solution of (6) is H(x, y) = c where c is an arbitrary constant.

Equations with Homogeneous Coefficients Solving Some Differential Equations by Using Appropriate Substi Exact Differential Equations Integrating Factors The Linear Differential Equation Bernoulli's Equation

Example

Find the solution of differential equation

$$2x(y^2 + y)dx + (x^2 - 1)ydy = 0, \quad y \neq 0.$$
 (7)

The variables of the equation of (7) can be separated as

$$rac{2x}{x^2-1}dx=rac{-1}{y+1}dy, \hspace{0.1in} x
eq\pm 1, \hspace{0.1in} ext{and} \hspace{0.1in} y
eq-1,$$

by integrating two sides we have

$$\ln |x^2 - 1| + \ln |y + 1| = c,$$

or

$$\ln |(x^2 - 1)(y + 1)| = c.$$

Equations with Homogeneous Coefficients Solving Some Differential Equations by Using Appropriate Substi Exact Differential Equations Integrating Factors The Linear Differential Equation Bernoulli's Equation

What happens when $x = \pm 1$ and when, y = 0 or y = -1. Going back to the original equation (7) we see that four lines $x = \pm 1$, y = 0 and y = -1 also satisfy the differential equation (7). If we relax the restriction $c_1 \neq 0$, the curve y = -1 will be contained in the formula

Equations with Homogeneous Coefficients Solving Some Differential Equations by Using Appropriate Substi Exact Differential Equations Integrating Factors The Linear Differential Equation Bernoulli's Equation

$$y = -1 + rac{c_1}{x^2 - 1}$$
 for $c_1 = 0$.

However the curves $x = \pm 1$ and y = 0 are not contained in the same formula, for any values of c_1 . Sometimes such curves are called *singular solutions* and the one parameter family of solutions

$$y = -1 + \frac{c_1}{x^2 - 1}$$

where c_1 is an arbitrary constant, is called the general solution.

Equations with Homogeneous Coefficients Solving Some Differential Equations by Using Appropriate Substi Exact Differential Equations Integrating Factors The Linear Differential Equation Bernoulli's Equation

Example

Find the solution of the differential equation

$$(xy+x)dx = (x^2y^2 + x^2 + y^2 + 1)dy.$$
 (8)

Solution.

We have

$$x(y+1)dx = (x^2+1)(y^2+1)dy,$$

hence

$$\frac{xdx}{x^2+1} = \frac{y^2+1}{y+1}dy, \quad y \neq -1,$$

then

$$\frac{xdx}{x^2+1} = \left[(y-1) + \frac{2}{y+1}\right]dy,$$

Equations with Homogeneous Coefficients Solving Some Differential Equations by Using Appropriate Substi Exact Differential Equations Integrating Factors The Linear Differential Equation Bernoulli's Equation

by integrating the two sides, we obtain

$$\ln(x^{2}+1) - (y-1)^{2} - \ln(y+1)^{4} = c.$$
(9)

So the family of curves (9) defines implicitly the solution of (8). We also see that y = -1 satisfies the equation (7) but it is not in the family (9), then y = -1 is a singular solution of (8).

Equations with Homogeneous Coefficients Solving Some Differential Equations by Using Appropriate Substi Exact Differential Equations Integrating Factors The Linear Differential Equation Bernoulli's Equation

Example

Solve the initial value problem

$$\begin{cases} e^{y} \frac{dy}{dx} = \cos(2x) + 2e^{y} \sin^{2}(x) - 1, \\ y(\frac{\pi}{2}) = \ln 2. \end{cases}$$

Solution.

By separating the variables we have

$$e^{y} \frac{dy}{dx} = 2e^{y} \sin^{2}(x) + \cos(2x) - 1,$$

= $e^{y}(1 - \cos(2x)) - (1 - \cos(2x))$
= $(e^{y} - 1)(1 - \cos(2x)),$

Equations with Homogeneous Coefficients Solving Some Differential Equations by Using Appropriate Substi Exact Differential Equations Integrating Factors The Linear Differential Equation Bernoulli's Equation

hence

$$\int \frac{e^y}{e^y-1} dy = \int (1-\cos(2x)) dx.$$

Consequently

$$\ln|e^{y} - 1| + \frac{\sin(2x)}{2} - x = c,$$

which is the solution of the differential equation. Now we use the initial condition

$$x = \frac{\pi}{2}, y = \ln 2 \implies \ln 1 + \frac{\sin \pi}{2} - \frac{\pi}{2} = c \implies c = -\frac{\pi}{2},$$

then the solution of initial value problem is

$$\ln|e^{y} - 1| + \frac{\sin 2x}{2} + \frac{\pi}{2} = 0.$$

Equations with Homogeneous Coefficients

Definition

Let f be a function of x and y with domain D. The function f is called homogeneous of degree $k \in \mathbb{R}$ if

 $f(tx, ty) = t^k f(x, y) \quad \forall t > 0$, and $\forall (x, y) \in D$ such that $(tx, ty) \in D$

Example

• It is easy to see that if M(x, y) and N(x, y) are both homogeneous and of the same degree, then the function $\frac{M(x,y)}{N(x,y)}$ is homogeneous of degree zero. We can take as an example the function

$$f(x,y) = \frac{x^2 - y^2}{x^2 + y^2},$$

is homogeneous of degree zero.

O The function

$$f(x,y) = x - 2y + \sqrt{x^2 + 4y^2},$$

is homogeneous of degree one.

For

$$f(tx, ty) = tx - 2ty + \sqrt{(tx)^2 + 4(ty)^2}$$

= $|t| \left[x - 2y + \sqrt{x^2 + 4y^2} \right],$
= $tf(x, y).$

The function f(x, y) = x ln x - x ln y, is homogeneous of degree one because f(x, y) = x ln(^x/_y), and

$$f(tx, ty) = (tx)\ln(\frac{tx}{ty}) = t\left[x\ln(\frac{x}{y})\right] = tf(x, y).$$

Example

Solve the differential equation

$$(x^{2} - xy + y^{2})dx - xydy = 0.$$
 (10)

Solution.

The coefficients in (10) are both homogeneous and of degree two in x and y. Let $u = \frac{y}{x}$, $x \neq 0$, then

$$y = ux \implies dy = udx + xdu,$$

and we have

$$(x^{2} - x^{2}u + x^{2}u^{2})dx - x^{2}u(udx + xdu) = 0.$$

We divide this equation by x^2 to obtain

$$(1-u+u^2)dx-u(udx+xdu)=0,$$

Hence we separate the variables to get

$$\frac{dx}{x} + \frac{udu}{u-1} = 0, \quad u \neq 1,$$

or

$$\frac{dx}{x} + \left[1 + \frac{1}{u-1}\right] du = 0,$$

a family of solutions is seen to be

$$\ln |x| + u + \ln |u - 1| = \ln |c|, \ c \neq 0.$$

or

$$x(u-1)e^u=c_1, \quad x
eq 0, \ u
eq 1 \ {
m and} \ c_1
eq 0.$$

In terms of the original variables, these solutions are given by

$$x(\frac{y}{x}-1)\exp(\frac{y}{x})=c_1,$$

or

$$(y-x)\exp(\frac{y}{x}) = c_1, x \neq 0 \text{ and } y \neq x.$$
 (11)

We see that y = x is also is solution of the equation (10) and y = x satisfies (11) for $c_1 = 0$. Then the family of solutions of the DE (10) is given by

$$(y-x)\exp(\frac{y}{x})=c_1, \ x\neq 0 \ \text{and} \ c_1\in\mathbb{R}.$$

Solve the differential equation

$$\frac{dy}{dx} + \frac{3xy + y^2}{x^2 + xy} = 0, \ x \neq 0 \ \text{and} \ y \neq -x.$$
(12)

Example

Solve the initial value problem

$$ydx + x\left(\ln\frac{x}{y} - 1\right)dy = 0, \quad y(1) = e.$$

The coefficients of the differential equation are homogeneous with degree one. So we can put $u = \frac{x}{y}$ then $x = yu \implies dx = ydu + udy$.

we can suppose that y > 0 because the initial condition y(1) > 0. We obtain

$$y(ydu + udy) + yu(\ln u - 1)dy = 0$$

 $y^2 du + yu \ln u \, dy = 0$, hence

$$\frac{du}{u\ln u} + \frac{dy}{y} = 0, \ u \neq 1,$$

Find the solution of the differential equation

$$x\frac{dy}{dx} - y = \sqrt{x^2 + y^2}, \ x > 0.$$
 (13)

Solving Some Differential Equations by Using Appropriate Substitution

If we have a differential equation of the form

$$\frac{dy}{dx}=f(Ax+By).$$

We substitute

$$u = Ax + By$$
,

then

$$\frac{du}{dx} = A + B\frac{dy}{dx}.$$

Separable Equations Equations with Homogeneous Coefficients
Solving Some Differential Equations by Using Appropriate Substi
Exact Differential Equations
Integrating Factors The Linear Differential Equation
Bernoulli's Equation

Example

Find the solution of the differential equation

$$\frac{dy}{dx} = (-2x + y)^2 - 7.$$
(14)

Let
$$u = -2x + y$$
,, then $u' = -2 + \frac{dy}{dx}$, and

$$\frac{dy}{dx} = u' + 2 = u^2 - 7$$

or

$$\frac{du}{dx} = u^2 - 9 \implies \frac{1}{6} \int \frac{1}{u-3} du - \frac{1}{6} \int \frac{1}{u+3} du = dx, \quad u \neq \pm 3,$$

SO

$$\ln\left|\frac{u-3}{u+3}\right| - 6x = c$$

then the solutions of the differential equation (14) is given by

$$\ln\left|\frac{-2x+y-3}{-2x+y+3}\right| - 6x = c$$

where c is an arbitrary constant.

Separable Equations Equations with Homogeneous Coefficients Solving Some Differential Equations by Using Appropriate Substi Exact Differential Equations Integrating Factors The Linear Differential Equation	
Bernoulli's Equation	
Example	

Solve the differential equation by using an appropriate substitution

$$\frac{dy}{dx} = \frac{1 - 4x - 4y}{x + y}, \ x + y \neq 0.$$
 (15)

The straight lines 1 - 4x - 4y = 0, and x + y = 0 are parallel, in this case we put u = x + y, hence y' = u' - 1. Then $\frac{dy}{dx} = \frac{1-4u}{u} = \frac{du}{dx} - 1$. Or $\frac{du}{dx} = \frac{1-3u}{u}$, $\implies \frac{u}{1-3u} du = dx$, $u \neq 0$ and $1 - 3u \neq 0$.

Consequently

$$\frac{-1}{3}\int\left(1-\frac{1}{1-3u}\right)du=\int dx,$$

$$+\frac{u}{3}+\frac{1}{9}\ln|1-3u|+x=c,$$

then the solutions of the differential equation (15) is given by

$$\frac{x+y}{3} + \frac{1}{9}\ln|1 - 3x - 3y| + x = c,$$

where c is an arbitrary constant.

Separable Equations Equations with Homogeneous Coefficients Solving Some Differential Equations by Using Appropriate Substi Exact Differential Equations Integrating Factors The Linear Differential Equation Bernoulli's Equation	
Example	

Solve the differential equation by using an appropriate substitution

$$\frac{dy}{dx} = \frac{x - y - 3}{x + y - 1}, \ x + y - 1 \neq 0.$$
 (16)

We see that the two straight lines x - y - 3 = 0, and x + y - 1 = 0, are not parallel, in this case we find the point of intersection which is (2, -1) and we put x - 2 = u, y + 1 = v. Or

$$x = u + 2$$
, $y = v - 1$, \implies $dx = du$, $dy = dv$,

then $\frac{dv}{du} = \frac{u+2-(v-1)-3}{u+2+(v-1)-1} = \frac{u-v}{u+v}$.

So, we have the homogeneous differential equation

$$\frac{dv}{du} = \frac{u-v}{u+v}.$$

Hence we put $\frac{v}{u} = t$, where $u \neq 0$, then v = ut, and

$$\frac{dv}{du} = t + u \frac{dt}{du}.$$

So we deduce that

$$u\frac{dt}{du} = \frac{1-t}{1+t} - t = \frac{1-2t-t^2}{1+t}.$$

Or

$$\int \frac{du}{u} = \int \frac{1+t}{1-2t-t^2} dt, \ 1-2t-t^2 \neq 0,$$

$$\ln|u| + \frac{1}{2}\ln|1 - 2t - t^{2}| = c,$$
$$\ln\left[u^{2}\left|1 - 2\frac{v}{u} - \frac{v^{2}}{u^{2}}\right|\right] = 2c,$$
$$u^{2} - 2vu - v^{2} = c_{1}, \quad c_{1} = \pm e^{2c}.$$

Then the solution of the differential equation (16) is given by

$$(x-2)^2-2(x-2)(y+1)-(y+1)^2=c_1$$
, where $c_1
eq 0$ is an arbitrary const

Example

Solve the differential equation by using an appropriate substitution

$$\frac{dy}{dx} = \frac{y(1+xy)}{x(1-xy)}, \ x > 0, \quad y > 0 \quad \text{and} \ xy \neq 1.$$
 (17)

Solution.

We can solve this differential equation by using the substitution u = xy or $y = \frac{u}{x}$ then

$$x\frac{dy}{dx} + y = \frac{du}{dx},$$

hence

$$x\frac{dy}{dx} = \frac{y(1+xy)}{(1-xy)}$$

$$\frac{du}{dx} - y = \frac{y(1 + xy)}{(1 - xy)}$$
$$\frac{du}{dx} - \frac{u}{x} = \frac{u}{x}(\frac{1 + u}{1 - u})$$
$$\frac{du}{dx} = \frac{2u}{x(1 - u)}.$$

By separating the variables we have

$$\frac{1}{2}\int(\frac{1}{u}-1)du=\int\frac{dx}{x},$$

$$\ln u - u - \ln x^2 = c \implies \frac{u}{x^2} = e^u c_1, \quad c_1 = e^c,$$

then the solution of the differential equation (17) is given by

$$\frac{y}{x}=e^{xy}c_1$$
, where $c_1
eq 0$ is an arbitrary constant.

Separable Equations Equations with Homogeneous Coefficients	
Solving Some Differential Equations by Using Appropriate Substi	
Exact Differential Equations	
Integrating Factors	
The Linear Differential Equation	
Bernoulli's Equation	

Exercises

In exercises 1 through 11, obtain a family of solutions

$$3(3x^{2} + y^{2})dx - 2xydy = 0.$$

$$(x - y)dx + (2x + y)dy = 0.$$

$$x^{2}y' = 4x^{2} + 7xy + 2y^{2}.$$

$$(x - y)(4x + y)dx + x(5x - y)dy = 0.$$

$$x(x^{2} + y^{2})(ydx - xdy) + y^{6}dy = 0.$$

In exercises 6 through 12, find the solution of the initial value problem (IVP)

$$\begin{cases} (x - y)dx + (3x + y)dy = 0, \\ y(3) = -2. \end{cases}$$

$$\begin{cases} (y - \sqrt{x^2 + y^2})dx - xdy = 0, \\ y(0) = 1. \end{cases}$$

$$\begin{cases} [x \cos^2(\frac{y}{x}) - y] dx + xdy = 0, \\ y(1) = \frac{\pi}{4}. \end{cases}$$

$$\begin{cases} y^{2}dx + (x^{2} + 3xy + 4y^{2})dy = 0, \\ y(2) = 1. \end{cases}$$

$$\begin{cases} y(x^{2} + y^{2})dx + x(3x^{2} - 5y^{2})dy = 0, \\ y(2) = 1. \end{cases}$$

$$\begin{cases} (x + ye^{\frac{y}{x}})dx - xe^{\frac{y}{x}}dy = 0, \\ y(1) = 0. \end{cases}$$

$$\begin{cases} (x^{2} + 2y^{2})\frac{dx}{dy} = xy, \\ y(-1) = 1. \end{cases}$$

Solve the following differential equations by using an appropriate substitution.

(3)
$$\frac{dy}{dx} = (x + y + 1)^2.$$

(4) $\frac{dy}{dx} = \tan^2(x + y).$
(5) $\frac{dy}{dx} = 2 + \sqrt{y - 2x + 3}.$

Exact Differential Equations

A differential equation of the form

1

$$M(x, y)dx + N(x, y)dy = 0,$$
 (18)

is called *exact* if there is a function F of x and y such that

$$dF(x,y) = M(x,y)dx + N(x,y)dy = 0.$$
 (19)

Recall that the total differential of a function F of x and y is given by

$$dF = \frac{\partial F}{\partial x}dx + \frac{\partial F}{\partial y}dy,$$

provided that the partial derivatives of the function F with respect to x and y exist. This equation is equivalent to

dF = 0.

Thus, the function F is constant and the solution of the differential equation (18) is given by F(x, y) = C.

Theorem

If $M, N, \frac{\partial M}{\partial y}$ and $\frac{\partial N}{\partial x}$ are continuous on a region R in xy-plane, then the differential equation (18) is exact if and only if

$$\frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}$$
 on R .

Example

Prove that the following differential equations are exact and find their solutions

$$(2x^3 - xy^2 - 2y + 3)dx - (x^2y + 2x)dy = 0.$$
 (20)

Here

$$\frac{\partial M}{\partial y} = -2xy - 2 = \frac{\partial N}{\partial x}$$

so the equation (20) is exact. Then there exists a function F of xand y such that $\frac{\partial F}{\partial x} = 2x^3 - xy^2 - 2y + 3$ and $\frac{\partial F}{\partial y} = -(x^2y + 2x).$

We have

$$F(x,y) = \int (2x^3 - xy^2 - 2y + 3) dx = \frac{1}{2}x^4 - \frac{1}{2}x^2y^2 - 2yx + 3x + g(y).$$

where g will be determined from Eq (??). The latter yields

$$\begin{aligned} -x^2y - 2x + g'(y) &= -x^2y - 2x, \\ g'(y) &= 0. \end{aligned}$$

Therefore g(y) = C, then the solution of the differential equation (20) is defined implicitly by

$$\frac{1}{2}x^4 - \frac{1}{2}x^2y^2 - 2yx + 3x + C = 0.$$

Example

Solve the differential equation:

$$\left[\cos x \ln(2y-8) + \frac{1}{x}\right] dx + \frac{\sin x}{y-4} dy = 0$$

$$x \neq 0$$
, and $y > 4$.
Here

$$\frac{\partial M}{\partial y} = \cos x \frac{2}{2y - 8} = \cos x \cdot \frac{1}{y - 4} = \frac{\partial N}{\partial x}.$$

Thus the equation is exact. Then there exists a function F of x and y such that

$$\frac{\partial F}{\partial x} = M = \cos x \ln(2y - 8) + \frac{1}{x} \quad \frac{\partial F}{\partial y} = N = \frac{\sin x}{y - 4}.$$

We have
$$F(x,y) = \int \frac{\sin x}{y-4} dy = \sin x \ln(y-4) + g(x)$$
.

$$\frac{\partial F}{\partial x} = \cos x \, \ln(y-4) + g'(x)$$
$$= \cos x \, \ln(2y-8) + \frac{1}{x}$$
$$= \cos x \, \ln 2 + \cos x \, \ln(y-4) + \frac{1}{x},$$

-

hence

$$g'(x) = \frac{1}{x} + \cos x \ln 2 \text{ or } g(x) = \ln |x| + \sin x \ln 2 + C,$$

so the solution of the differential equation $(\ref{equation})$ is defined implicitly by

$$F(x, y) = \sin x \ln(y - 4) + \ln |x| + \sin x \ln 2 + C = 0,$$

$$F(x, y) = \sin x \ln(2y - 8) + \ln |x| + C = 0.$$

Example

Solve the differential equation:

$$(e^{2y} - y\cos xy)dx + (2xe^{2y} - x\cos xy + 2y)dy = 0, y \neq 0.$$
 (21)

We have

$$\frac{\partial M}{\partial y} = 2e^{2y} + xy\sin xy - \cos xy = \frac{\partial N}{\partial x}.$$

Then equation is exact and there exists a function F of x and y such that

$$\frac{\partial F}{\partial x} = M = e^{2y} - y \cos xy, \quad \frac{\partial F}{\partial y} = N = 2xe^{2y} - x \cos xy + 2y.$$

We deduce that

$$F(x, y) = xe^{2y} - \sin xy + g(y),$$

where the function g will be determined from Eq (??)

$$\frac{\partial F}{\partial y} = 2xe^{2y} - x\cos xy + g'(y) = 2xe^{2y} - x\cos xy + 2y,$$

hence g'(y) = 2y or $g(y) = y^2 + C$. So the solution of the differential equation (21) is defined implicitly by

$$F(x, y) = xe^{2y} - \sin xy + y^2 + C = 0.$$

Exercises

Test each of the following equations for exactness and solve it. If some of the equations are not exact, then use the appropriate method to solve them.

(
$$6x + y^2$$
) $dx + y(2x - 3y)dy = 0.$
 ($2xy - 3x^2$) $dx + (x^2 + y)dy = 0.$
 ($y^2 - 2xy + 6x$) $dx - (x^2 - 2xy + 2)dy = 0$
 ($x - 2y$) $dx + 2(y - x)dy = 0.$
 ($2xy + y$) $dx + (x^2 - x)dy = 0.$

Integrating Factors

Consider the differential equation

$$M(x, y)dx + N(x, y)dy = 0,$$
 (22)

where M, N, $\frac{\partial M}{\partial y}$, and $\frac{\partial N}{\partial x}$ are continuous on a certain region R in *xy*-plane. Suppose that Eq (22) is not exact, that is

$$\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial x} \quad \text{on } R.$$

Definition

A function h of x and y is called an integrating factor of Eq (22) if the differential equation

$$(h \ M) dx + (h \ N) dy = 0,$$
 (23)

is exact, that is

$$\frac{\partial(hM)}{\partial y} = \frac{\partial(hN)}{\partial x} \text{ on } R, \qquad (24)$$

where $h(x, y) \neq 0$ for all $(x, y) \in R$.

Since (2) is exact, we can solve it, and its solutions will also satisfy the differential equation (22).

> As h = h(x, y) is an integrating factor of Eq (22), then h satisfies the partial differential equation

$$N h_x - M h_y = (M_y - N_x) h.$$
 (25)

In general, it is very difficult to solve the partial differential Eq (25) without some restrictions on the functions M and N of the Eq (22). Suppose h is a function of one variable, for example, say that h depends only on x. In this case, $h_x = \frac{dh}{dx}$ and $h_y = 0$, so Eq (25) can be written as

$$\frac{dh}{dx} = \frac{M_y - N_x}{N} h.$$
 (26)

> We are still at an awkward situation if the quotient $\frac{M_y - N_x}{N}$ depends on both x and y. However, if after all obvious algebraic simplifications are made, the quotient $\frac{M_y - N_x}{N}$ turns out depend solely on the variable x, then Eq (26) is a first -order ordinary differential equation. We can finally determine h because Eq (26) is separable as well as linear. Then we have

$$h(x) = e^{\int (\frac{M_y - N_x}{N}) dx}.$$
(27)

In like manner, it follows from Eq (25) that if h depends only the variable y, then

$$\frac{dh}{dy} = \frac{N_x - M_y}{M} h.$$
(28)

In this case, if $(N_x - M_y) / M$ is a function of y only, then we can solve Eq (28) for h. We summarize the results for the differential equation

$$M(x,y)dx + N(x,y)dy = 0.$$
 (29)

i) If $\frac{M_y - N_x}{N}$ is a function of x only, then an integrating factor for Eq (29) is $h(x) = e^{\int \frac{M_y - N_x}{N} dx}.$ (30)

ii) If $\frac{N_x - M_y}{M}$ is a function of y only, then an integrating factor for Eq (29) is

$$h(y) = e^{\int \frac{M_X - M_Y}{M} dy}.$$
(31)

Example

Find the solution of the differential equation

$$xydx + (2x^2 + 3y^2 - 20)dy = 0,$$
 (32)

where $x \neq 0$ and y > 0. We have

$$M = xy$$
 and $N = 2x^2 + 3y^2 - 20$,

then $M_y = x$ and $N_x = 4x$, so Eq (32) is not exact.

But

$$\frac{M_y - N_x}{N} = \frac{x - 4x}{2x^2 + 3y^2 - 20} = \frac{-3x}{2x^2 + 3y^2 - 20},$$

so this quotient depends on x and y.But

$$\frac{N_x-M_y}{M}=\frac{4x-x}{xy}=\frac{3}{y}=g(y),$$

Then the integrating factor for Eq (32) is

$$h(y) = e^{\int \frac{N_x - M_y}{M} dy} = e^{\int g(y) dy} = e^{\int \frac{3}{y} dy} = e^{\ln y^3} = y^3.$$

Then we multiply the equation Eq (32) by

$$h(y)=y^3,$$

and we obtain

$$xy^4 dx + (2x^2y^3 + 3y^5 - 20y^3) dy = 0.$$

This equation is exact, because

$$M_y = N_x = 4xy^3.$$

So there exists a function F of x and y satisfies

$$\frac{\partial F}{\partial x} = M = xy^4.$$

$$\frac{\partial F}{\partial y} = N = 2x^2y^3 + 3y^5 - 20y^3.$$

Hence

$$F(x,y) = \int (xy^4) dx \implies F(x,y) = \frac{1}{2}x^2y^4 + g(y).$$

But

$$\frac{\partial F}{\partial y} = 2x^2y^3 + g'(y) = 2x^2y^3 + 3y^5 - 20y^3 \implies g'(y) = 3y^5 - 20y^3,$$

or

$$g(y) = \frac{1}{2}y^6 - 5y^4 + C.$$

Then the solution of the differential equation (32) is given by

$$F(x,y) = \frac{1}{2}x^2y^4 + \frac{1}{2}y^6 - 5y^4 + C = 0.$$
 (33)

Example

Solve the differential equation :

$$(4xy + 3y^2 - x)dx + x(x + 2y)dy = 0, x(x + 2y) \neq 0.$$
 (34)

Here

$$M = 4xy + 3y^2 - x$$
, $N = x^2 + 2xy$,

SO

$$\frac{\partial M}{\partial y} - \frac{\partial N}{\partial x} = 4x + 6y - (2x + 2y) = 2(x + 2y).$$

Hence

$$\frac{1}{N}\left(\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}\right)=\frac{2(x+2y)}{x(x+2y)}=\frac{2}{x}=f(x).$$

Then the integrating factor for Eq (34) is

$$h(x) = e^{\int f(x)dx} = e^{2\ln|x|} = x^2.$$

Returning to the original Eq (34), we insert the integrating factor and obtain

$$(4x^{3}y + 3x^{2}y^{2} - x^{3})dx + (x^{4} + 2x^{3}y)dy = 0, \qquad (35)$$

where we know that Eq (35) must be an exact equation. Let us find the function F of x and y by another method. We can put Eq (35) in the form

$$(4x^{3}y \ dx + x^{4}dy) + (3x^{2}y^{2}dx + 2x^{3}ydy) - x^{3}dx = 0,$$

hence

$$d(x^{4}y) + d(x^{3}y^{2}) + d(\frac{-1}{4}x^{4}) = d(x^{4}y + x^{3}y^{2}\frac{-1}{4}x^{4}) = 0,$$

SO

$$d(F(x,y)) = d(x^4y + x^3y^2 - \frac{1}{4}x^4) = 0 \implies F(x,y) = x^4y + x^3y^2 - \frac{1}{4}x^4$$

is the solution of the differential equation (34).

Solve the differential equation

$$y(x+y+1)dx + x(x+3y+2)dy = 0, \quad y(x+y+1 \neq 0.$$
 (36)

Here

$$M = yx + y^2 + y, N = x^2 + 3xy + 2x$$
,

then

$$\frac{\partial M}{\partial y} = x + 2y + 1, \quad \frac{\partial N}{\partial x} = 2x + 3y + 2,$$
$$\frac{\partial M}{\partial y} - \frac{\partial N}{\partial x} = -x - y - 1 = -(x + y + 1),$$
$$\frac{1}{M} \left(\frac{\partial N}{\partial x} - \frac{\partial M}{\partial y}\right) = \frac{(x + y + 1)}{y(x + y + 1)} = \frac{1}{y} = g(y),$$

so the integrating factor for Eq (36) is

$$h(y) = e^{\int g(y)dy} = e^{\int \frac{dy}{y}} = |y|.$$

> It follows that if y > 0, then h(y) = y and if y < 0, we have h(y) = -y. In other case Eq (36) becomes $(xy^2 + y^3 + y^2)dx + (x^2y + 3xy^2 + 2xy)dy = 0$, or

$$(xy^{2}dx + x^{2}ydy) + (y^{3}dx + 3xy^{2}dy) + (y^{2}dx + 2xydy) = 0,$$

$$d \left(\frac{1}{2}x^{2}y^{2}\right) + d(xy^{3}) + d(xy^{2}) = 0,$$

$$d \left(F(x, y) = d\left(\frac{1}{2}x^{2}y^{2} + xy^{3} + xy^{2}\right) = 0,$$

Then the solution of the differential equation (36) is

$$F(x,y) = \frac{1}{2}x^2y^2 + xy^3 + xy^2 + C = 0.$$

Example

Find k, $n \in \mathbb{Z}$ such that $h(x, y) = x^k y^n$, is an integrating factor of the differential equation

$$y(x^{3}-y)dx + -x(x^{3}+y)dy = 0, x > 0, y > 0.$$
 (37)

$$(x^{3}y - y^{2})dx - (x^{4} + xy)dy = 0,$$

We have to find k and n such that the equation

$$(x^{k+3}y^{n+1} - y^{n+2}x^k)dx - (x^{k+4}y^n + x^{k+1}y^{n+1})dy = 0,$$

is exact, which means that

$$\frac{\partial M}{\partial y} = (n+1)y^n x^{k+3} - (n+2)y^{n+1} x^k$$
$$= \frac{\partial N}{\partial x} = -(k+4)x^{k+3}y^n - (k+1)x^k y^{n+1},$$

hence

$$(n+k+5)y^nx^{k+3}+(k-n-1)x^ky^{n+1}=0,$$

which implies that

$$\left\{ \begin{array}{c} n+k+5=0\\ k-n-1=0 \end{array} \right| \Longrightarrow n=-3, \text{ and } k=-2.$$

So the differential equation

$$\left(\frac{x}{y^2} - \frac{1}{yx^2}\right)dx + \left(-\frac{x^2}{y^3} - \frac{1}{xy^2}\right)dy = 0,$$
 (38)

is exact, and it is easy to see that the solution of Eq (38) is given by

$$F(x,y) = \frac{x^2}{2y^2} + \frac{1}{xy} + C = 0.$$

Exercises

Solve each of the following equations.

In problems 8- 12, solve the given differential equation by finding an appropriate integrating factor.

In problems 13 and 14, solve the given initial-value problem by finding an appropriate integrating factor.

$$\begin{cases} xdx + (x^2y + 4y)dy = 0, \\ y(4) = 0. \end{cases}$$

$$\begin{cases} (x^2 + y^2 - 5)dx = (y + xy)dy, \\ y(0) = 1. \end{cases}$$

Solve the exercise 15 by two methods.

$$y(8x-9y)dx+2x(x-3y)dy=0.$$

Find the value k so that the given differential equation is exact.

$$(y^3 + kxy^4 - 2x)dx + (3xy^2 + 20x^2y^3)dy = 0.$$

The General Solution of Linear Differential Equation

Consider the linear differential equation

$$\frac{dy}{dx} + P(x)y = Q(x). \tag{39}$$

Suppose that *P* and *Q* are continuous functions on an interval a < x < b and $x = x_0$ is any number in that interval. If y_0 is an arbitrary real number, there exists a unique solution y = y(x) of the differential equation (39) which satisfies the initial condition

$$y(x_0) = y_0.$$
 (40)

Moreover, this solution satisfies Eq (39) throughout the entire interval a < x < b. It is easy to see that

$$h(x) = e^{\int P(x)dx}.$$
(41)

is an integrating factor for Eq (39) and the general solution of Eq (39) is given by

$$y h(x) = \int h(x) Q(x) dx + C.$$
 (42)

Since $h(x) \neq 0$ for all $x \in (a, b)$ we can write

$$y(x) = e^{-\int P(x)dx} \left[\int h(x) Q(x) dx \right] + C e^{-\int P(x)dx}.$$
 (43)

We can choose the constant C so that $y = y_0$ when $x = x_0$.

Example

Find the general solution of the differential equation

$$(1+x^2)\frac{dy}{dx} + xy + x^3 + x = 0.$$
 (44)

Eq (44) can be written in the form $\frac{dy}{dx} + \frac{x}{1+x^2}y = -x$.. Then $h(x) = e^{\int \frac{x}{x^2+1}dx} = e^{\ln \sqrt{x^2+1}} = \sqrt{x^2+1}$, so

$$y h(x) = y\sqrt{x^2 + 1} = \int h(x) Q(x) dx$$
$$= -\int x\sqrt{x^2 + 1} dx = \frac{-1}{3}(1 + x^2)^{\frac{3}{2}} + C$$

Hence the general solution of Eq (44) is

$$y(x) = -\frac{1}{3}(x^2 + 1) + \frac{C}{\sqrt{x^2 + 1}}.$$
 (45)

The general solution of Eq (44) can be written as the sum of two solutions

$$y(x) = y_h + y_p,$$

where $y_h = \frac{C}{\sqrt{x^2 + 1}}$ is the general solution of $\frac{dy}{dx} + \frac{x}{1 + x^2}y = 0$, and $y_p = -\frac{1}{3}(x^2 + 1)$ is a particular solution of the equation $\frac{dy}{dx} + \frac{x}{1 + x^2}y = -x$.

Example

Find the general solution of the differential equation

$$2(2xy+4y-3)dx+(x+2)^2dy=0, \ x\neq -2.$$
 (46)

Eq (46) can be written in the form $\frac{dy}{dx}(x+2)^2 + 4y(x+2) = 6$, or $\frac{dy}{dx} + \frac{4}{x+2}y = \frac{6}{(x+2)^2}$.

Then
$$h(x) = e^{\int \frac{4}{x+2}dx} = e^{4\ln|x+2|} = (x+2)^4$$
, thus

$$y h(x) = y (x+2)^4 = \int h(x)Q(x)dx = \int 6(x+2)^2 dx = 2(x+2)^3 + C.$$

Hence the general solution of Eq (46) is

$$y(x) = \frac{2}{x+2} + C \frac{1}{(x+2)^4}.$$

Example

Find the initial value problem (IVP)

$$(y - x + xy \cot x)dx + xdy = 0, \quad 0 < x < \pi,$$

 $y(\frac{\pi}{2}) = 0.$ (47)

We have $x\frac{dy}{dx} + y(1 + x \cot x) = x$, or $\frac{dy}{dx} + (\frac{1}{x} + \cot x)y = 1$. Then

$$h(x) = e^{\int \left(\frac{1}{x} + \cot x\right) dx} = e^{\ln x + \ln(\sin x)} = x \sin x.$$

So the general solution of Eq (47) is

$$h(x)y = x\sin x \ y(x) = \int x\sin x \ dx = -x\cos x + \sin x + C,$$

or

$$y(x) = -\cot x + \frac{1}{x} + C\frac{1}{x\sin x}$$

Now we use the condition $y(\frac{\pi}{2}) = 0$, to find the constant C. In fact

$$y(\frac{\pi}{2}) = -(0) + \frac{2}{\pi} + C\frac{2}{\pi} = 0 \Longrightarrow C = -1.$$

then the solution of the (IVP) (47) is

$$y(x) = -\cot x + \frac{1}{x} - \frac{1}{x\sin x}$$

Example

Find the initial value problem (*IVP*)

$$\begin{cases} (x+1)\frac{dy}{dx} + (x+2)y = 2xe^{-x}, \quad x > -1, \\ y(0) = 1. \end{cases}$$
(48)

We have $\frac{dy}{dx} + (1 + \frac{1}{x+1})y = \frac{2x}{x+1}e^{-x}$. Then $h(x) = e^{\int (1 + \frac{1}{x+1})dx} = e^{x+\ln(x+1)} = (x+1)e^x$, and the general solution of Eq (48) is

$$h(x)y = (x+1)e^{x}y = \int h(x)Q(x)dx = \int 2xdx = x^{2} + C,$$

or
$$y(x) = \frac{x^2}{x+1}e^{-x} + C\frac{1}{x+1}e^{-x}$$
. From the condition $y(0) = 1$,
we deduce that $y(0) = 0 + C = 1 \Longrightarrow C = 1$. Hence the solution
of (*IVP*) (48) is

$$y(x) = \frac{x^2}{x+1}e^{-x} + \frac{1}{x+1}e^{-x}$$

Exercises

In exercises 1 through 9, find the general solution.

$$\begin{cases} y' - xy = (1 - x^2)e^{\frac{1}{2}x^2}, \\ y(0) = 0. \end{cases}$$

$$\begin{cases} (1 - x)\frac{dy}{dx} + xy = x(x - 1)^2, \\ y(5) = 24. \end{cases}$$

$$\begin{cases} (2x+3)y' = y + (2x+3)^{\frac{1}{2}}, \\ y(-1) = 0. \end{cases}$$

$$\begin{cases} (3xy+3y-4)dx + (x+1)^2 dy = 0, \\ y(0) = 1. \end{cases}$$

1

$$\begin{cases} x(x^2+1)y'+2y=(x^2+1)^3,\\ y(1)=-1. \end{cases}$$

- Solve the differential equation (x + a)y' = bx ny, where a, b, and n are constants with $n \neq 0$, $n \neq -1$.
- Solve the equation of exercise (48) for the exceptional cases n = 0 and n = -1.

In the standard form

$$dy + Pydx = Qdx.$$

put y = vw, thus

$$w(dv + Pvdx) + vdw = Qdx.$$

then, by first choosing v so that

$$dv + Pvdx = 0$$
,

and later determining w, show how to complete the solution

$$dy + Pydx = Qdx.$$

Bernoulli's Equation

Bernoulli's equation is a well known differential equation which has the general form

$$y' + P(x)y = Q(x)y^{n}$$
, (49)

where $n \in \mathbb{R}$.

- If n = 0 then Eq (49) is a linear first differential equation and we have discussed before.
- 2 If n = 1, Eq (49) becomes a differential equation with separable variables, so we solve it.
- Now we suppose that n ≠ 0 and n ≠ 1, we suppose also y ≠ 0 on some interval I = (a, b), then Eq (49) can be written in the form

$$y^{-n}y' + P(x)y^{-n+1} = Q(x).$$
 (50)

Now we put $u = y^{-n+1}$, then we have

$$u'=(-n+1)y^{-n}y',$$

so Eq (50) becomes
$$rac{1}{-n+1}u'+P(x)u=Q(x)$$
, ,

or

$$u' + (-n+1)P(x)u = Q(x)(-n+1),$$
(51)

is linear, and can be solved.

Example

Solve the differential equation

$$y(6y^2 - x - 1)dx + 2xdy = 0, \quad x > 0.$$
 (52)

First we write Eq (52) in the form

$$y' - \frac{x+1}{2x}y = \frac{-3}{x}y^3$$
,

> so the obtained equation is a Bernoulli equation, where n = 3. Now suppose that $y \neq 0$ on some interval I = (a, b), then Eq (52) can be written in the form

$$y'y^{-3} - \frac{x+1}{2x}y^{-2} = \frac{-3}{x},$$
(53)

and put

$$u=y^{-2} \implies u'=-2y^{-3}y',$$

hence Eq (53) becomes

$$u' + \frac{x+1}{x}u = \frac{6}{x}.$$
 (54)

This equation is linear and the integrating factor for Eq (54) is

$$h(x) = e^{\int (1+\frac{1}{x})dx} = xe^{x}.$$

Then the solution of
$$Eq$$
 (54) is

$$xe^{x}u = 6e^{x} + C$$
,

so the solution of Eq (52) is

$$y^2(6+Ce^{-x})=x.$$
 (55)

Example

Write the differential equation

$$3(1+x^2)\frac{dy}{dx} = 2xy(y^3 - 1).$$
 (56)

in the form of Bernoulli's equation an solve it, where $y \neq 0$ on some interval I = (a, b). Eq (56) can be written in the form

$$y' + \frac{2x}{3(x^2 + 1)}y = \frac{2x}{3(x^2 + 1)}y^4.$$
 (57)

So we have Bernoulli's equation with n = 4. We divide Eq (57) by y^4 and we get

$$y'y^{-4} + \frac{2x}{3(x^2+1)}y^{-3} = \frac{2x}{3(x^2+1)}.$$
 (58)

Now we put $u = y^{-3}$, then

$$u'=-3y^{-4}y',$$

and Eq (58) becomes

$$u' - \frac{2x}{(x^2 + 1)}u = -\frac{2x}{(x^2 + 1)}.$$
(59)

Eq (59) is linear which has an integrating factor

$$h(x) = \frac{1}{x^2 + 1} \implies \frac{1}{x^2 + 1}u = \frac{1}{x^2 + 1} + C.$$

Then the solution of Eq (56) is

$$y^{3}[1+(x^{2}+1)C]=1.$$
 (60)

Example

Find the solution of the initial value problem

$$\begin{cases} (2y^3 - x^3)dx + 2xy^2dy = 0, \quad x > 0, \\ y(1) = 1. \end{cases}$$
(61)

The differential equation in the (IVP) (61) can be written in the form

$$y' + \frac{1}{x}y = \frac{x^2}{2}y^{-2}.$$
 (62)

So Eq (62) is a Bernoulli equation with n = -2, and suppose that $y \neq 0$ on some interval I = (a, b). From Eq (62) we deduce that

$$y^2y' + \frac{1}{x}y^3 = \frac{x^2}{2}$$

Put

$$u = y^3 \implies u' = 3y^2y',$$

hence we have

$$\frac{1}{3}u' + \frac{1}{x}u = \frac{x^2}{2}.$$

or

$$u' + \frac{3}{x}u = \frac{3}{2}x^2.$$
 (63)

Eq (63) is linear which has an integrating factor $h(x) = x^3$, then the solution of Eq (63) is

$$ux^3 = \frac{1}{4}x^6 + C.$$

so the solution of the differential equation is

$$y^3 = \frac{1}{4}x^3 + \frac{1}{x^3}C.$$
 (64)

Now we use the condition y(1) = 1, then $C = \frac{3}{4}$, so the solution of the (*IVP*) (61) is

$$y^3 = \frac{1}{4}x^3 + \frac{3}{4x^3}.$$
 (65)