# First Order Differential Equations 

Mongi BLEL<br>Department of Mathematics<br>King Saud University

January 17, 2024

## Table of contents

(1) Separable Equations
(2) Equations with Homogeneous Coefficients
(3) Solving Some Differential Equations by Using Appropriate Substitution

4 Exact Differential Equations
(5) Integrating Factors
(6) The Linear Differential Equation
(7) Bernoulli's Equation

## Initial-Value Problems

We are often interested in problems in which we seek a solution $y(x)$ of differential equation so that it satisfies prescribed side conditions. that is conditions imposed on the unknown $y(x)$ or its derivatives. On some interval I containing $x_{0}$, the problem

$$
\left\{\begin{array}{c}
\frac{d^{n} y}{d x^{n}}=f\left(x, y, y^{\prime}, \ldots, y^{(n-1)}\right) \\
y\left(x_{0}\right)=y_{0}, y^{\prime}\left(x_{0}\right)=y_{1}, \ldots, y^{(n-1)}\left(x_{0}\right)=y_{n-1}
\end{array}\right.
$$

where $y_{0}, y_{1}, \ldots, y_{n-1}$ are arbitrary specified real constants, is called an initial value problem (IVP). The values $y(x)$ and its first $n-1$ derivatives at a single point $x_{0}: y\left(x_{0}\right)=y_{0}$, $y^{\prime}\left(x_{0}\right)=y_{1}, \ldots, y^{(n-1)}\left(x_{0}\right)=y_{n-1}$ are called initial conditions. Special cases: First and second-order (IVPs)

$$
\begin{gather*}
\left\{\begin{array}{c}
\frac{d y}{d x}=f(x, y), \\
y\left(x_{0}\right)=y_{0}
\end{array}\right.  \tag{1}\\
\left\{\begin{array}{c}
\frac{d^{2} y}{d x^{2}}=f\left(x, y, y^{\prime}\right) \\
y\left(x_{0}\right)=y_{0}, y^{\prime}\left(x_{0}\right)=y_{1}
\end{array}\right. \tag{2}
\end{gather*}
$$

are first and second-order initial value problems, respectively.

In this chapter we study several elementary methods for solving first -order differential equations.
Consider the equation of order one

$$
\begin{equation*}
F\left(x, y, y^{\prime}\right)=0 \tag{3}
\end{equation*}
$$

We suppose that the equation (3), with some conditions, can be written as

$$
\begin{equation*}
y^{\prime}=\frac{d y}{d x}=f(x, y) \tag{4}
\end{equation*}
$$

The equation (4) can be also written in the form

$$
M(x, y) d x+N(x, y) d y=0
$$

where $M$ and $N$ are two functions of $x$ and $y$.

## Existence Theorem

## Theorem

Consider the differential equation of order one

$$
\begin{equation*}
\frac{d y}{d x}=f(x, y) . \tag{5}
\end{equation*}
$$

We assume that $f$ is defined on a domain $\Omega \subset \mathbb{R}^{2}$ which contain $\left(x_{0}, y_{0}\right)$. Suppose also that $f$ and $\frac{\partial f}{\partial y}$ are continuous on $\Omega$. Then there exist $h>0$ and a unique solution $y$ of this differential equation defined on the interval $\left(x_{0}-h, x_{0}+h\right)$ and $y\left(x_{0}\right)=y_{0}$.

## Example

Find the largest region of the $x y$-plane for which the initial value problem

$$
\left\{\begin{array}{c}
\sqrt{x^{2}-4} y^{\prime}=1+\sin (x) \ln y \\
y(3)=4
\end{array}\right.
$$

has a unique solution.

$$
\begin{gathered}
y^{\prime}=\frac{1+\sin (x) \ln y}{\sqrt{x^{2}-4}}=f(x, y) \\
y^{\prime}=\frac{1}{\sqrt{x^{2}-4}}+\frac{\sin x}{\sqrt{x^{2}-4}} \ln y, \quad y>0 \quad \text { and } \quad|x|>2
\end{gathered}
$$

$$
\frac{\partial f}{\partial y}=\frac{\sin x}{\sqrt{x^{2}-4}} \frac{1}{y}
$$

Then $f$ and $\frac{\partial f}{\partial y}$ are continuous on

$$
\begin{aligned}
R & =\left\{(x, y) \in \mathbb{R}^{2}, \quad|x|>2, \quad y>0\right\} \\
& =\{(x, y), x>2, \quad y>0\} \cup\{(x, y), x<-2, \quad y>0\}
\end{aligned}
$$

But the point $(3,4) \in R_{1}=\{(x, y), x>2, \quad y>0\}$, then the largest region in $x y$-plane for which the IVP has a unique solution is $R_{1}$.

## Example

Determine the largest region for which the following initial value problem admits a unique solution.

$$
\left\{\begin{array}{c}
\ln (x-2) \frac{d y}{d x}=\sqrt{y-2} \\
y\left(\frac{5}{2}\right)=4 .
\end{array}\right.
$$

## Example

Find the largest region of the $x y$-plane for which the following initial value problem has a unique solution

$$
\left\{\begin{array}{c}
\sqrt{\frac{x}{y}} y^{\prime}=\cos (x+y), \quad y \neq 0 \\
y(1)=1
\end{array}\right.
$$

We have

$$
y^{\prime}=\cos (x+y)\left(\frac{x}{y}\right)^{\frac{-1}{2}}=f(x, y) .
$$

Then

$$
\frac{\partial f}{\partial y}=-\sin (x+y)\left(\frac{x}{y}\right)^{\frac{-1}{2}}-\frac{1}{2} \cos (x+y)\left(\frac{x}{y}\right)^{\frac{-3}{2}}\left(\frac{-x}{y^{2}}\right) .
$$

So $f$ and $\frac{\partial f}{\partial y}$ are continuous on $R=\left\{(x, y), \frac{x}{y}>0\right\}$, or

$$
R=\{(x, y), x<0 \quad \text { and } y<0\} \cup\{(x, y), x>0 \text { and } y>0\}
$$

But

$$
(1,1) \in R_{1}=\{(x, y), \quad x>0, \quad y>0\}
$$

Then the largest region for which the given (IVP) has a unique solution is $R_{1}$.

## Exercises

(1) Determine and sketch the largest region of the $x y$-plane for which the following initial value problems have a unique solution

$$
\left\{\begin{array}{r}
\frac{d y}{d x}=\frac{y+2 x}{y-2 x} \\
y(1)=0
\end{array}\right.
$$

In problems 2- 10, determine a region of the $x y$-plane for which the given differential equations would have a unique solution whose graph passes through a point $\left(x_{0}, y_{0}\right)$ in the region.
(2) $\frac{d y}{d x}=y^{\frac{2}{3}}$.
(3) $\frac{d y}{d x}=\sqrt{x y}$.
(4) $x \frac{d y}{d x}=y^{\frac{1}{3}}$.
(5) $\frac{d y}{d x}-\ln y=\sqrt{x}$.
(6) $\left(4-y^{2}\right) y^{\prime}=x^{2} y$.
(7) $\ln (x-1) y^{\prime}=\sin ^{-1}(y)$.
(8) $\left(x^{2}+y^{2}\right) y^{\prime}=\sqrt{y} x$.
(0) $(y-x) y^{\prime}=y+x^{2}$.
(10) $\left(1+y^{3}\right) y^{\prime}=\tan ^{-1}(x)$.

In problems 11-14 determine whether Theorem (1) guarantees that the differential equation

$$
y^{\prime}=\sqrt{y^{2}-9}
$$

possesses a unique solution through the given point.
(1) $(1,4)$.
(2) $(5,3)$.
(3) $(2,-3)$.
( $-(-1,1)$.

## Separable Equations

We begin our study of methods for solving first -order differential equation by studying an equation of the form

$$
M(x, y) d x+N(x, y) d y=0
$$

where $M$ and $N$ are two functions of $x$ and $y$. Some equations of this type are so simple that they can be written in the form

$$
\begin{equation*}
F(x) d x+G(y) d y=0 \tag{6}
\end{equation*}
$$

that is, the variables can be separated. The solution can be written immediately. For, it is only a matter of finding a function $H$ such that

$$
d H(x, y)=F(x) d x+G(y) d y=0
$$

the solution of (6) is $H(x, y)=c$ where $c$ is an arbitrary constant.

## Example

Find the solution of differential equation

$$
\begin{equation*}
2 x\left(y^{2}+y\right) d x+\left(x^{2}-1\right) y d y=0, \quad y \neq 0 \tag{7}
\end{equation*}
$$

The variables of the equation of (7) can be separated as

$$
\frac{2 x}{x^{2}-1} d x=\frac{-1}{y+1} d y, \quad x \neq \pm 1, \quad \text { and } \quad y \neq-1
$$

by integrating two sides we have

$$
\ln \left|x^{2}-1\right|+\ln |y+1|=c
$$

or

$$
\ln \left|\left(x^{2}-1\right)(y+1)\right|=c
$$

What happens when $x= \pm 1$ and when, $y=0$ or $y=-1$. Going back to the original equation (7) we see that four lines $x= \pm 1$, $y=0$ and $y=-1$ also satisfy the differential equation (7). If we relax the restriction $c_{1} \neq 0$, the curve $y=-1$ will be contained in the formula

$$
y=-1+\frac{c_{1}}{x^{2}-1} \text { for } c_{1}=0
$$

However the curves $x= \pm 1$ and $y=0$ are not contained in the same formula, for any values of $c_{1}$. Sometimes such curves are called singular solutions and the one parameter family of solutions

$$
y=-1+\frac{c_{1}}{x^{2}-1}
$$

where $c_{1}$ is an arbitrary constant, is called the general solution.

## Example

Find the solution of the differential equation

$$
\begin{equation*}
(x y+x) d x=\left(x^{2} y^{2}+x^{2}+y^{2}+1\right) d y . \tag{8}
\end{equation*}
$$

## Solution.

We have

$$
x(y+1) d x=\left(x^{2}+1\right)\left(y^{2}+1\right) d y
$$

hence

$$
\frac{x d x}{x^{2}+1}=\frac{y^{2}+1}{y+1} d y, \quad y \neq-1
$$

then

$$
\frac{x d x}{x^{2}+1}=\left[(y-1)+\frac{2}{y+1}\right] d y
$$

by integrating the two sides, we obtain

$$
\begin{equation*}
\ln \left(x^{2}+1\right)-(y-1)^{2}-\ln (y+1)^{4}=c \tag{9}
\end{equation*}
$$

So the family of curves (9) defines implicitly the solution of (8). We also see that $y=-1$ satisfies the equation (7) but it is not in the family (9), then $y=-1$ is a singular solution of (8).

## Example

Solve the initial value problem

$$
\left\{\begin{array}{c}
e^{y} \frac{d y}{d x}=\cos (2 x)+2 e^{y} \sin ^{2}(x)-1, \\
y\left(\frac{\pi}{2}\right)=\ln 2
\end{array}\right.
$$

## Solution.

By separating the variables we have

$$
\begin{aligned}
e^{y} \frac{d y}{d x} & =2 e^{y} \sin ^{2}(x)+\cos (2 x)-1 \\
& =e^{y}(1-\cos (2 x))-(1-\cos (2 x)) \\
& =\left(e^{y}-1\right)(1-\cos (2 x))
\end{aligned}
$$

hence

$$
\int \frac{e^{y}}{e^{y}-1} d y=\int(1-\cos (2 x)) d x
$$

Consequently

$$
\ln \left|e^{y}-1\right|+\frac{\sin (2 x)}{2}-x=c
$$

which is the solution of the differential equation. Now we use the initial condition

$$
x=\frac{\pi}{2}, \quad y=\ln 2 \quad \Longrightarrow \ln 1+\frac{\sin \pi}{2}-\frac{\pi}{2}=c \Longrightarrow c=-\frac{\pi}{2},
$$

then the solution of initial value problem is

$$
\ln \left|e^{y}-1\right|+\frac{\sin 2 x}{2}+\frac{\pi}{2}=0
$$

## Equations with Homogeneous Coefficients

## Definition

Let $f$ be a function of $x$ and $y$ with domain $D$. The function $f$ is called homogeneous of degree $k \in \mathbb{R}$ if
$f(t x, t y)=t^{k} f(x, y) \forall t>0, \quad$ and $\forall(x, y) \in D$ such that $(t x, t y) \in D$

## Example

(1) It is easy to see that if $M(x, y)$ and $N(x, y)$ are both homogeneous and of the same degree, then the function $\frac{M(x, y)}{N(x, y)}$ is homogeneous of degree zero. We can take as an example the function

$$
f(x, y)=\frac{x^{2}-y^{2}}{x^{2}+y^{2}}
$$

is homogeneous of degree zero.
(2) The function

$$
f(x, y)=x-2 y+\sqrt{x^{2}+4 y^{2}}
$$

is homogeneous of degree one.

For

$$
\begin{aligned}
f(t x, t y) & =t x-2 t y+\sqrt{(t x)^{2}+4(t y)^{2}} \\
& =|t|\left[x-2 y+\sqrt{x^{2}+4 y^{2}}\right] \\
& =t f(x, y)
\end{aligned}
$$

(3) The function $f(x, y)=x \ln x-x \ln y$, is homogeneous of degree one because $f(x, y)=x \ln \left(\frac{x}{y}\right)$, and

$$
f(t x, t y)=(t x) \ln \left(\frac{t x}{t y}\right)=t\left[x \ln \left(\frac{x}{y}\right)\right]=t f(x, y)
$$

## Example

Solve the differential equation

$$
\begin{equation*}
\left(x^{2}-x y+y^{2}\right) d x-x y d y=0 \tag{10}
\end{equation*}
$$

## Solution.

The coefficients in (10) are both homogeneous and of degree two in $x$ and $y$. Let $u=\frac{y}{x}, x \neq 0$, then

$$
y=u x \quad \Longrightarrow \quad d y=u d x+x d u
$$

and we have

$$
\left(x^{2}-x^{2} u+x^{2} u^{2}\right) d x-x^{2} u(u d x+x d u)=0
$$

We divide this equation by $x^{2}$ to obtain

$$
\left(1-u+u^{2}\right) d x-u(u d x+x d u)=0
$$

Hence we separate the variables to get

$$
\frac{d x}{x}+\frac{u d u}{u-1}=0, \quad u \neq 1
$$

or

$$
\frac{d x}{x}+\left[1+\frac{1}{u-1}\right] d u=0
$$

a family of solutions is seen to be

$$
\ln |x|+u+\ln |u-1|=\ln |c|, \quad c \neq 0 .
$$

or

$$
x(u-1) e^{u}=c_{1}, \quad x \neq 0, \quad u \neq 1 \text { and } c_{1} \neq 0
$$

In terms of the original variables, these solutions are given by

$$
x\left(\frac{y}{x}-1\right) \exp \left(\frac{y}{x}\right)=c_{1},
$$

or

$$
\begin{equation*}
(y-x) \exp \left(\frac{y}{x}\right)=c_{1}, \quad x \neq 0 \text { and } y \neq x . \tag{11}
\end{equation*}
$$

We see that $y=x$ is also is solution of the equation (10) and $y=x$ satisfies (11) for $c_{1}=0$. Then the family of solutions of the $D E(10)$ is given by

$$
(y-x) \exp \left(\frac{y}{x}\right)=c_{1}, \quad x \neq 0 \text { and } c_{1} \in \mathbb{R}
$$

## Example

Solve the differential equation

$$
\begin{equation*}
\frac{d y}{d x}+\frac{3 x y+y^{2}}{x^{2}+x y}=0, \quad x \neq 0 \text { and } y \neq-x \tag{12}
\end{equation*}
$$

## Example

Solve the initial value problem

$$
y d x+x\left(\ln \frac{x}{y}-1\right) d y=0, \quad y(1)=e
$$

The coefficients of the differential equation are homogeneous with degree one. So we can put $u=\frac{x}{y}$ then $x=y u \Longrightarrow d x=y d u+u d y$. we can suppose that $y>0$ because the initial condition $y(1)>0$. We obtain

$$
y(y d u+u d y)+y u(\ln u-1) d y=0
$$

$y^{2} d u+y u \ln u d y=0$, hence

$$
\frac{d u}{u \ln u}+\frac{d y}{y}=0, u \neq 1
$$

## Example

Find the solution of the differential equation

$$
\begin{equation*}
x \frac{d y}{d x}-y=\sqrt{x^{2}+y^{2}}, \quad x>0 \tag{13}
\end{equation*}
$$

## Solving Some Differential Equations by Using Appropriate Substitution

If we have a differential equation of the form

$$
\frac{d y}{d x}=f(A x+B y)
$$

We substitute

$$
u=A x+B y
$$

then

$$
\frac{d u}{d x}=A+B \frac{d y}{d x} .
$$

## Example

Find the solution of the differential equation

$$
\begin{equation*}
\frac{d y}{d x}=(-2 x+y)^{2}-7 \tag{14}
\end{equation*}
$$

Let $u=-2 x+y$, then $u^{\prime}=-2+\frac{d y}{d x}$, and

$$
\frac{d y}{d x}=u^{\prime}+2=u^{2}-7
$$

or

$$
\frac{d u}{d x}=u^{2}-9 \Longrightarrow \frac{1}{6} \int \frac{1}{u-3} d u-\frac{1}{6} \int \frac{1}{u+3} d u=d x, \quad u \neq \pm 3
$$

so

$$
\ln \left|\frac{u-3}{u+3}\right|-6 x=c
$$

then the solutions of the differential equation (14) is given by

$$
\ln \left|\frac{-2 x+y-3}{-2 x+y+3}\right|-6 x=c
$$

where $c$ is an arbitrary constant.

## Example

Solve the differential equation by using an appropriate substitution

$$
\begin{equation*}
\frac{d y}{d x}=\frac{1-4 x-4 y}{x+y}, x+y \neq 0 \tag{15}
\end{equation*}
$$

The straight lines $1-4 x-4 y=0$, and $x+y=0$ are parallel, in this case we put $u=x+y$, hence $y^{\prime}=u^{\prime}-1$. Then $\frac{d y}{d x}=\frac{1-4 u}{u}=\frac{d u}{d x}-1$. Or
$\frac{d u}{d x}=\frac{1-3 u}{u}, \quad \Longrightarrow \frac{u}{1-3 u} d u=d x, \quad u \neq 0$ and $1-3 u \neq 0$.

## Consequently

$$
\begin{gathered}
\frac{-1}{3} \int\left(1-\frac{1}{1-3 u}\right) d u=\int d x \\
+\frac{u}{3}+\frac{1}{9} \ln |1-3 u|+x=c
\end{gathered}
$$

then the solutions of the differential equation (15) is given by

$$
\frac{x+y}{3}+\frac{1}{9} \ln |1-3 x-3 y|+x=c
$$

where $c$ is an arbitrary constant.

## Example

Solve the differential equation by using an appropriate substitution

$$
\begin{equation*}
\frac{d y}{d x}=\frac{x-y-3}{x+y-1}, \quad x+y-1 \neq 0 \tag{16}
\end{equation*}
$$

We see that the two straight lines $x-y-3=0$, and $x+y-1=0$, are not parallel, in this case we find the point of intersection which is $(2,-1)$ and we put $x-2=u, \quad y+1=v$. Or

$$
x=u+2, y=v-1, \Longrightarrow d x=d u, \quad d y=d v
$$

then $\frac{d v}{d u}=\frac{u+2-(v-1)-3}{u+2+(v-1)-1}=\frac{u-v}{u+v}$.

So, we have the homogeneous differential equation

$$
\frac{d v}{d u}=\frac{u-v}{u+v} .
$$

Hence we put $\frac{v}{u}=t$, where $u \neq 0$, then $v=u t$, and

$$
\frac{d v}{d u}=t+u \frac{d t}{d u}
$$

So we deduce that

$$
u \frac{d t}{d u}=\frac{1-t}{1+t}-t=\frac{1-2 t-t^{2}}{1+t}
$$

Or

$$
\int \frac{d u}{u}=\int \frac{1+t}{1-2 t-t^{2}} d t, \quad 1-2 t-t^{2} \neq 0
$$

$$
\begin{gathered}
\ln |u|+\frac{1}{2} \ln \left|1-2 t-t^{2}\right|=c \\
\ln \left[u^{2}\left|1-2 \frac{v}{u}-\frac{v^{2}}{u^{2}}\right|\right]=2 c \\
u^{2}-2 v u-v^{2}=c_{1}, \quad c_{1}= \pm e^{2 c}
\end{gathered}
$$

Then the solution of the differential equation (16) is given by
$(x-2)^{2}-2(x-2)(y+1)-(y+1)^{2}=c_{1}$, where $c_{1} \neq 0$ is an arbitrary const

## Example

Solve the differential equation by using an appropriate substitution

$$
\begin{equation*}
\frac{d y}{d x}=\frac{y(1+x y)}{x(1-x y)}, x>0, \quad y>0 \quad \text { and } \quad x y \neq 1 \tag{17}
\end{equation*}
$$

## Solution.

We can solve this differential equation by using the substitution $u=x y$ or $y=\frac{u}{x}$ then

$$
x \frac{d y}{d x}+y=\frac{d u}{d x}
$$

hence

$$
x \frac{d y}{d x}=\frac{y(1+x y)}{(1-x y)}
$$

$$
\begin{gathered}
\frac{d u}{d x}-y=\frac{y(1+x y)}{(1-x y)} \\
\frac{d u}{d x}-\frac{u}{x}=\frac{u}{x}\left(\frac{1+u}{1-u}\right) \\
\frac{d u}{d x}=\frac{2 u}{x(1-u)} .
\end{gathered}
$$

By separating the variables we have

$$
\frac{1}{2} \int\left(\frac{1}{u}-1\right) d u=\int \frac{d x}{x}
$$

$$
\ln u-u-\ln x^{2}=c \quad \Longrightarrow \quad \frac{u}{x^{2}}=e^{u} c_{1}, \quad c_{1}=e^{c}
$$

then the solution of the differential equation (17) is given by
$\frac{y}{x}=e^{x y} c_{1}$, where $c_{1} \neq 0$ is an arbitrary constant.

## Exercises

In exercises 1 through 11, obtain a family of solutions
(1) $3\left(3 x^{2}+y^{2}\right) d x-2 x y d y=0$.
(2) $(x-y) d x+(2 x+y) d y=0$.
(3) $x^{2} y^{\prime}=4 x^{2}+7 x y+2 y^{2}$.
(9) $(x-y)(4 x+y) d x+x(5 x-y) d y=0$.
(5) $x\left(x^{2}+y^{2}\right)(y d x-x d y)+y^{6} d y=0$.

In exercises 6 through 12, find the solution of the initial value problem (IVP )
(0) $\left\{\begin{array}{c}(x-y) d x+(3 x+y) d y=0, \\ y(3)=-2 .\end{array}\right.$
(1) $\left\{\begin{array}{c}\left(y-\sqrt{x^{2}+y^{2}}\right) d x-x d y=0, \\ y(0)=1 .\end{array}\right.$
(8) $\left\{\begin{array}{c}{\left[x \cos ^{2}\left(\frac{y}{x}\right)-y\right] d x+x d y=0,} \\ y(1)=\frac{\pi}{4} .\end{array}\right.$
(0) $\left\{\begin{array}{c}y^{2} d x+\left(x^{2}+3 x y+4 y^{2}\right) d y=0, \\ y(2)=1 .\end{array}\right.$
(10) $\left\{\begin{array}{c}y\left(x^{2}+y^{2}\right) d x+x\left(3 x^{2}-5 y^{2}\right) d y=0, \\ y(2)=1 .\end{array}\right.$
(1) $\left\{\begin{array}{c}\left(x+y e^{\frac{y}{x}}\right) d x-x e^{\frac{y}{x}} d y=0, \\ y(1)=0 .\end{array}\right.$
(12) $\left\{\begin{array}{c}\left(x^{2}+2 y^{2}\right) \frac{d x}{d y}=x y, \\ y(-1)=1 .\end{array}\right.$

Solve the following differential equations by using an appropriate substitution.
(3) $\frac{d y}{d x}=(x+y+1)^{2}$.
(14) $\frac{d y}{d x}=\tan ^{2}(x+y)$.
(15) $\frac{d y}{d x}=2+\sqrt{y-2 x+3}$.
(10) $\frac{d y}{d x}=1+e^{y-x+5}$.
(17) $\frac{d y}{d x}=\frac{1-x-y}{x+y}$.
(18) $(x+2 y-4) d x-(2 x+y-5) d y=0$.
(1) $(2 x+3 y-1) d x+(2 x+3 y+2) d y=0$.
(21) $x \frac{d y}{d x}=y \ln (x y)$.
(21) $\frac{d y}{d x}=\frac{2 y}{x}+\cos ^{2}\left(\frac{y}{x^{2}}\right), x \neq 0$. (Hint put $\left.u=\frac{y}{x^{2}}\right)$.

## Exact Differential Equations

A differential equation of the form

$$
\begin{equation*}
M(x, y) d x+N(x, y) d y=0 \tag{18}
\end{equation*}
$$

is called exact if there is a function $F$ of $x$ and $y$ such that

$$
\begin{equation*}
d F(x, y)=M(x, y) d x+N(x, y) d y=0 \tag{19}
\end{equation*}
$$

Recall that the total differential of a function $F$ of $x$ and $y$ is given by

$$
d F=\frac{\partial F}{\partial x} d x+\frac{\partial F}{\partial y} d y
$$

provided that the partial derivatives of the function $F$ with respect to $x$ and $y$ exist. This equation is equivalent to

$$
d F=0
$$

Thus, the function $F$ is constant and the solution of the differential equation (18) is given by $F(x, y)=C$.

## Theorem

If $M, N, \frac{\partial M}{\partial y}$ and $\frac{\partial N}{\partial x}$ are continuous on a region $R$ in $x y$-plane, then the differential equation (18) is exact if and only if

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x} \text { on } R
$$

## Example

Prove that the following differential equations are exact and find their solutions

$$
\begin{equation*}
\left(2 x^{3}-x y^{2}-2 y+3\right) d x-\left(x^{2} y+2 x\right) d y=0 \tag{20}
\end{equation*}
$$

Here

$$
\frac{\partial M}{\partial y}=-2 x y-2=\frac{\partial N}{\partial x}
$$

so the equation (20) is exact. Then there exists a function $F$ of $x$ and $y$ such that $\frac{\partial F}{\partial x}=2 x^{3}-x y^{2}-2 y+3$ and $\frac{\partial F}{\partial y}=-\left(x^{2} y+2 x\right)$.

We have
$F(x, y)=\int\left(2 x^{3}-x y^{2}-2 y+3\right) d x=\frac{1}{2} x^{4}-\frac{1}{2} x^{2} y^{2}-2 y x+3 x+g(y)$.
where $g$ will be determined from $E q$ (??). The latter yields

$$
\begin{aligned}
-x^{2} y-2 x+g^{\prime}(y) & =-x^{2} y-2 x, \\
g^{\prime}(y) & =0 .
\end{aligned}
$$

Therefore $g(y)=C$, then the solution of the differential equation (20) is defined implicitly by

$$
\frac{1}{2} x^{4}-\frac{1}{2} x^{2} y^{2}-2 y x+3 x+C=0 .
$$

## Example

Solve the differential equation:

$$
\left[\cos x \ln (2 y-8)+\frac{1}{x}\right] d x+\frac{\sin x}{y-4} d y=0
$$

$$
x \neq 0, \text { and } y>4
$$

Here

$$
\frac{\partial M}{\partial y}=\cos x \frac{2}{2 y-8}=\cos x \cdot \frac{1}{y-4}=\frac{\partial N}{\partial x}
$$

Thus the equation is exact. Then there exists a function $F$ of $x$ and $y$ such that

$$
\frac{\partial F}{\partial x}=M=\cos x \ln (2 y-8)+\frac{1}{x} \quad \frac{\partial F}{\partial y}=N=\frac{\sin x}{y-4}
$$

We have $F(x, y)=\int \frac{\sin x}{y-4} d y=\sin x \ln (y-4)+g(x)$.

$$
\begin{aligned}
\frac{\partial F}{\partial x} & =\cos x \ln (y-4)+g^{\prime}(x) \\
& =\cos x \ln (2 y-8)+\frac{1}{x} \\
& =\cos x \ln 2+\cos x \ln (y-4)+\frac{1}{x}
\end{aligned}
$$

hence

$$
g^{\prime}(x)=\frac{1}{x}+\cos x \ln 2 \text { or } g(x)=\ln |x|+\sin x \ln 2+C
$$

so the solution of the differential equation (??) is defined implicitly by

$$
\begin{gathered}
F(x, y)=\sin x \ln (y-4)+\ln |x|+\sin x \ln 2+C=0 \\
F(x, y)=\sin x \ln (2 y-8)+\ln |x|+C=0
\end{gathered}
$$

## Example

Solve the differential equation:

$$
\left(e^{2 y}-y \cos x y\right) d x+\left(2 x e^{2 y}-x \cos x y+2 y\right) d y=0, \quad y \neq 0
$$

We have

$$
\frac{\partial M}{\partial y}=2 e^{2 y}+x y \sin x y-\cos x y=\frac{\partial N}{\partial x}
$$

Then equation is exact and there exists a function $F$ of $x$ and $y$ such that

$$
\frac{\partial F}{\partial x}=M=e^{2 y}-y \cos x y, \quad \frac{\partial F}{\partial y}=N=2 x e^{2 y}-x \cos x y+2 y
$$

We deduce that

$$
F(x, y)=x e^{2 y}-\sin x y+g(y)
$$

where the function $g$ will be determined from $E q$ (??)

$$
\frac{\partial F}{\partial y}=2 x e^{2 y}-x \cos x y+g^{\prime}(y)=2 x e^{2 y}-x \cos x y+2 y
$$

hence $g^{\prime}(y)=2 y$ or $g(y)=y^{2}+C$. So the solution of the differential equation (21) is defined implicitly by

$$
F(x, y)=x e^{2 y}-\sin x y+y^{2}+C=0
$$

## Exercises

Test each of the following equations for exactness and solve it. If some of the equations are not exact, then use the appropriate method to solve them.
(1) $\left(6 x+y^{2}\right) d x+y(2 x-3 y) d y=0$.
(2) $\left(2 x y-3 x^{2}\right) d x+\left(x^{2}+y\right) d y=0$.
(3) $\left(y^{2}-2 x y+6 x\right) d x-\left(x^{2}-2 x y+2\right) d y=0$.
(9) $(x-2 y) d x+2(y-x) d y=0$.
(5) $(2 x y+y) d x+\left(x^{2}-x\right) d y=0$.
(1) $\left(1+y^{2}\right) d x+\left(x^{2} y+y\right) d y=0$.
(1) $\left(1+y^{2}+x y^{2}\right) d x+\left(x^{2} y+y+2 x y\right) d y=0$.
(8) $(2 x y-\tan y) d x+\left(x^{2}-x \sec ^{2} y\right) d y=0$.
(0) $x\left(3 x y-4 y^{3}+6\right) d x+\left(x^{3}-6 x^{2} y^{2}-1\right) d y=0$.
(10) $\left(x y^{2}+y-x\right) d x+x(x y+1) d y=0$.

Solve the following initial value problems
(1) $\left\{\begin{array}{c}(x-y) d x+(-x+y+2) d y=0, \\ y(1)=1 .\end{array}\right.$

## Integrating Factors

Consider the differential equation

$$
\begin{equation*}
M(x, y) d x+N(x, y) d y=0 \tag{22}
\end{equation*}
$$

where $M, N, \frac{\partial M}{\partial y}$, and $\frac{\partial N}{\partial x}$ are continuous on a certain region $R$ in $x y$-plane. Suppose that $E q$ (22) is not exact, that is

$$
\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial x} \text { on } R .
$$

## Definition

A function $h$ of $x$ and $y$ is called an integrating factor of $E q$ (22) if the differential equation

$$
\begin{equation*}
(h M) d x+(h N) d y=0 \tag{23}
\end{equation*}
$$

is exact, that is

$$
\begin{equation*}
\frac{\partial(h M)}{\partial y}=\frac{\partial(h N)}{\partial x} \text { on } R \tag{24}
\end{equation*}
$$

where $h(x, y) \neq 0$ for all $(x, y) \in R$.
Since (2) is exact, we can solve it, and its solutions will also satisfy the differential equation (22).

As $h=h(x, y)$ is an integrating factor of $E q$ (22), then $h$ satisfies the partial differential equation

$$
\begin{equation*}
N h_{x}-M h_{y}=\left(M_{y}-N_{x}\right) h . \tag{25}
\end{equation*}
$$

In general, it is very difficult to solve the partial differential $E q$ (25) without some restrictions on the functions $M$ and $N$ of the $E q$ (22). Suppose $h$ is a function of one variable, for example, say that $h$ depends only on $x$. In this case, $h_{x}=\frac{d h}{d x}$ and $h_{y}=0$, so Eq (25) can be written as

$$
\begin{equation*}
\frac{d h}{d x}=\frac{M_{y}-N_{x}}{N} h . \tag{26}
\end{equation*}
$$

We are still at an awkward situation if the quotient $\frac{M_{y}-N_{x}}{N}$ depends on both $x$ and $y$. However, if after all obvious algebraic simplifications are made, the quotient $\frac{M_{y}-N_{x}}{N}$ turns out depend solely on the variable $x$, then $E q(26)$ is a first -order ordinary differential equation. We can finally determine $h$ because $E q$ (26) is separable as well as linear. Then we have

$$
\begin{equation*}
h(x)=e^{\int\left(\frac{M_{y}-N_{x}}{N}\right) d x} . \tag{27}
\end{equation*}
$$

In like manner, it follows from $E q$ (25) that if $h$ depends only the variable $y$, then

$$
\begin{equation*}
\frac{d h}{d y}=\frac{N_{x}-M_{y}}{M} h . \tag{28}
\end{equation*}
$$

In this case, if $\left(N_{x}-M_{y}\right) / M$ is a function of $y$ only, then we can solve $E q$ (28) for $h$.
We summarize the results for the differential equation

$$
\begin{equation*}
M(x, y) d x+N(x, y) d y=0 \tag{29}
\end{equation*}
$$

i) If $\frac{M_{y}-N_{x}}{N}$ is a function of $x$ only, then an integrating factor for $E q$ (29) is

$$
\begin{equation*}
h(x)=e^{\int \frac{M_{y}-N_{x}}{N} d x} . \tag{30}
\end{equation*}
$$

ii) If $\frac{N_{x}-M_{y}}{M}$ is a function of $y$ only, then an integrating factor for $E q$ (29) is

$$
\begin{equation*}
h(y)=e^{\int \frac{N_{x}-M_{y}}{M} d y} . \tag{31}
\end{equation*}
$$

## Example

Find the solution of the differential equation

$$
\begin{equation*}
x y d x+\left(2 x^{2}+3 y^{2}-20\right) d y=0 \tag{32}
\end{equation*}
$$

where $x \neq 0$ and $y>0$.
We have

$$
M=x y \text { and } N=2 x^{2}+3 y^{2}-20
$$

then $M_{y}=x$ and $N_{x}=4 x$, so $E q$ (32) is not exact.

But

$$
\frac{M_{y}-N_{x}}{N}=\frac{x-4 x}{2 x^{2}+3 y^{2}-20}=\frac{-3 x}{2 x^{2}+3 y^{2}-20}
$$

so this quotient depends on $x$ and $y$.But

$$
\frac{N_{x}-M_{y}}{M}=\frac{4 x-x}{x y}=\frac{3}{y}=g(y)
$$

Then the integrating factor for $E q$ (32) is

$$
h(y)=e^{\int \frac{N_{x}-M_{y}}{M} d y}=e^{\int g(y) d y}=e^{\int \frac{3}{y} d y}=e^{\ln y^{3}}=y^{3} .
$$

Then we multiply the equation $E q$ (32) by

$$
h(y)=y^{3}
$$

and we obtain

$$
x y^{4} d x+\left(2 x^{2} y^{3}+3 y^{5}-20 y^{3}\right) d y=0
$$

This equation is exact, because

$$
M_{y}=N_{x}=4 x y^{3} .
$$

So there exists a function $F$ of $x$ and $y$ satisfies

$$
\begin{aligned}
& \frac{\partial F}{\partial x}=M=x y^{4} \\
& \frac{\partial F}{\partial y}=N=2 x^{2} y^{3}+3 y^{5}-20 y^{3}
\end{aligned}
$$

Hence

$$
F(x, y)=\int\left(x y^{4}\right) d x \Longrightarrow F(x, y)=\frac{1}{2} x^{2} y^{4}+g(y)
$$

But
$\frac{\partial F}{\partial y}=2 x^{2} y^{3}+g^{\prime}(y)=2 x^{2} y^{3}+3 y^{5}-20 y^{3} \Longrightarrow g^{\prime}(y)=3 y^{5}-20 y^{3}$,
or

$$
g(y)=\frac{1}{2} y^{6}-5 y^{4}+C .
$$

Then the solution of the differential equation (32) is given by

$$
\begin{equation*}
F(x, y)=\frac{1}{2} x^{2} y^{4}+\frac{1}{2} y^{6}-5 y^{4}+C=0 \tag{33}
\end{equation*}
$$

## Example

Solve the differential equation :

$$
\begin{equation*}
\left(4 x y+3 y^{2}-x\right) d x+x(x+2 y) d y=0, \quad x(x+2 y) \neq 0 \tag{34}
\end{equation*}
$$

Here

$$
M=4 x y+3 y^{2}-x, N=x^{2}+2 x y
$$

so

$$
\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}=4 x+6 y-(2 x+2 y)=2(x+2 y)
$$

Hence

$$
\frac{1}{N}\left(\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}\right)=\frac{2(x+2 y)}{x(x+2 y)}=\frac{2}{x}=f(x)
$$

Then the integrating factor for $E q$ (34) is

$$
h(x)=e^{\int f(x) d x}=e^{2 \ln |x|}=x^{2} .
$$

Returning to the original $E q$ (34), we insert the integrating factor and obtain

$$
\begin{equation*}
\left(4 x^{3} y+3 x^{2} y^{2}-x^{3}\right) d x+\left(x^{4}+2 x^{3} y\right) d y=0 \tag{35}
\end{equation*}
$$

where we know that $E q$ (35) must be an exact equation. Let us find the function $F$ of $x$ and $y$ by another method. We can put $E q$ (35) in the form

$$
\left(4 x^{3} y d x+x^{4} d y\right)+\left(3 x^{2} y^{2} d x+2 x^{3} y d y\right)-x^{3} d x=0,
$$

hence

$$
d\left(x^{4} y\right)+d\left(x^{3} y^{2}\right)+d\left(\frac{-1}{4} x^{4}\right)=d\left(x^{4} y+x^{3} y^{2} \frac{-1}{4} x^{4}\right)=0
$$

so
$d(F(x, y))=d\left(x^{4} y+x^{3} y^{2}-\frac{1}{4} x^{4}\right)=0 \Longrightarrow F(x, y)=x^{4} y+x^{3} y^{2}-\frac{1}{4} x^{4}$
is the solution of the differential equation (34).

## Example

## Solve the differential equation

$$
\begin{equation*}
y(x+y+1) d x+x(x+3 y+2) d y=0, \quad y(x+y+1 \neq 0 \tag{36}
\end{equation*}
$$

Here

$$
M=y x+y^{2}+y, N=x^{2}+3 x y+2 x
$$

then

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =x+2 y+1, \quad \frac{\partial N}{\partial x}=2 x+3 y+2 \\
\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x} & =-x-y-1=-(x+y+1) \\
\frac{1}{M}\left(\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}\right) & =\frac{(x+y+1)}{y(x+y+1}=\frac{1}{y}=g(y)
\end{aligned}
$$

so the integrating factor for $E q$ (36) is

$$
h(y)=e^{\int g(y) d y}=e^{\int \frac{d y}{y}}=|y| .
$$

It follows that if $y>0$, then $h(y)=y$ and if $y<0$, we have $h(y)=-y$. In other case $E q$ (36) becomes

$$
\left(x y^{2}+y^{3}+y^{2}\right) d x+\left(x^{2} y+3 x y^{2}+2 x y\right) d y=0
$$

or

$$
\begin{gathered}
\left(x y^{2} d x+x^{2} y d y\right)+\left(y^{3} d x+3 x y^{2} d y\right)+\left(y^{2} d x+2 x y d y\right)=0 \\
d\left(\frac{1}{2} x^{2} y^{2}\right)+d\left(x y^{3}\right)+d\left(x y^{2}\right)=0 \\
d\left(F(x, y)=d\left(\frac{1}{2} x^{2} y^{2}+x y^{3}+x y^{2}\right)=0\right.
\end{gathered}
$$

Then the solution of the differential equation (36) is

$$
F(x, y)=\frac{1}{2} x^{2} y^{2}+x y^{3}+x y^{2}+C=0
$$

## Example

Find $k, n \in \mathbb{Z}$ such that $h(x, y)=x^{k} y^{n}$, is an integrating factor of the differential equation

$$
\begin{gathered}
y\left(x^{3}-y\right) d x+-x\left(x^{3}+y\right) d y=0, x>0, y>0 \\
\left(x^{3} y-y^{2}\right) d x-\left(x^{4}+x y\right) d y=0
\end{gathered}
$$

We have to find $k$ and $n$ such that the equation

$$
\left(x^{k+3} y^{n+1}-y^{n+2} x^{k}\right) d x-\left(x^{k+4} y^{n}+x^{k+1} y^{n+1}\right) d y=0
$$

is exact, which means that

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =(n+1) y^{n} x^{k+3}-(n+2) y^{n+1} x^{k} \\
& =\frac{\partial N}{\partial x}=-(k+4) x^{k+3} y^{n}-(k+1) x^{k} y^{n+1}
\end{aligned}
$$

hence

$$
(n+k+5) y^{n} x^{k+3}+(k-n-1) x^{k} y^{n+1}=0
$$

which implies that

$$
\left\{\left.\begin{array}{l}
n+k+5=0 \\
k-n-1=0
\end{array} \right\rvert\, \Longrightarrow n=-3, \quad \text { and } k=-2 .\right.
$$

So the differential equation

$$
\begin{equation*}
\left(\frac{x}{y^{2}}-\frac{1}{y x^{2}}\right) d x+\left(-\frac{x^{2}}{y^{3}}-\frac{1}{x y^{2}}\right) d y=0 \tag{38}
\end{equation*}
$$

is exact, and it is easy to see that the solution of $E q$ (38) is given by

$$
F(x, y)=\frac{x^{2}}{2 y^{2}}+\frac{1}{x y}+C=0
$$

## Exercises

Solve each of the following equations.
(1) $\left(x^{2}+y^{2}+1\right) d x+x(x-2 y) d y=0$.
(2) $y(2 x-y+1) d x+x(3 x-4 y+3) d y=0$.
(3) $(x y+1) d x+x(x+4 y-2) d y=0$.
(4) $\left(2 y^{2}+3 x y-2 y+6 x\right) d x+x(x+2 y-1) d y=0$.
(6) $y^{2} d x+\left(3 x y+y^{2}-1\right) d y=0$.
(0) $2\left(2 y^{2}+5 x y-2 y+4\right) d x+x(2 x+2 y-1) d y=0$.
(1) $y\left(2 x^{2}-x y+10 d x+(x-y) d y=0\right.$.

In problems 8-12, solve the given differential equation by finding an appropriate integrating factor.
(8) $\left(2 y^{2}+3 x\right) d x+2 x y d y=0$.
(0) $\cos x d x+\left(1+\frac{2}{y}\right) \sin x d y=0$.
(10) $\left(10-6 y+e^{-3 x}\right) d x-2 d y=0$.
(1) $\left(x^{4}+y^{4}\right) d x-x y^{3} d y=0$.
(1) $\left(x^{2}-y^{2}+x\right) d x+2 x y d y=0$.

In problems 13 and 14, solve the given initial-value problem by finding an appropriate integrating factor.
(33) $\left\{\begin{array}{c}x d x+\left(x^{2} y+4 y\right) d y=0, \\ y(4)=0 .\end{array}\right.$
(44) $\left\{\begin{array}{c}\left(x^{2}+y^{2}-5\right) d x=(y+x y) d y, \\ y(0)=1 .\end{array}\right.$

Solve the exercise 15 by two methods.
(15) $y(8 x-9 y) d x+2 x(x-3 y) d y=0$.
(10) Find the value $k$ so that the given differential equation is exact.
$\left(y^{3}+k x y^{4}-2 x\right) d x+\left(3 x y^{2}+20 x^{2} y^{3}\right) d y=0$.

## The General Solution of Linear Differential Equation

Consider the linear differential equation

$$
\begin{equation*}
\frac{d y}{d x}+P(x) y=Q(x) \tag{39}
\end{equation*}
$$

Suppose that $P$ and $Q$ are continuous functions on an interval $a<x<b$ and $x=x_{0}$ is any number in that interval. If $y_{0}$ is an arbitrary real number, there exists a unique solution $y=y(x)$ of the differential equation (39) which satisfies the initial condition

$$
\begin{equation*}
y\left(x_{0}\right)=y_{0} . \tag{40}
\end{equation*}
$$

Moreover, this solution satisfies $E q$ (39) throughout the entire interval $a<x<b$. It is easy to see that

$$
\begin{equation*}
h(x)=e^{\int P(x) d x} \tag{41}
\end{equation*}
$$

is an integrating factor for $E q$ (39) and the general solution of $E q$ (39) is given by

$$
\begin{equation*}
y h(x)=\int h(x) Q(x) d x+C \tag{42}
\end{equation*}
$$

Since $h(x) \neq 0$ for all $x \in(a, b)$ we can write

$$
\begin{equation*}
y(x)=e^{-\int P(x) d x}\left[\int h(x) Q(x) d x\right]+C e^{-\int P(x) d x} . \tag{43}
\end{equation*}
$$

We can choose the constant $C$ so that $y=y_{0}$ when $x=x_{0}$.

## Example

Find the general solution of the differential equation

$$
\begin{equation*}
\left(1+x^{2}\right) \frac{d y}{d x}+x y+x^{3}+x=0 \tag{44}
\end{equation*}
$$

$E q$ (44) can be written in the form $\frac{d y}{d x}+\frac{x}{1+x^{2}} y=-x$.. Then $h(x)=e^{\int \frac{x}{x^{2}+1} d x}=e^{\ln \sqrt{x^{2}+1}}=\sqrt{x^{2}+1}$, so

$$
\begin{aligned}
y h(x) & =y \sqrt{x^{2}+1}=\int h(x) Q(x) d x \\
& =-\int x \sqrt{x^{2}+1} d x=\frac{-1}{3}\left(1+x^{2}\right)^{\frac{3}{2}}+C
\end{aligned}
$$

Hence the general solution of $E q$ (44) is

$$
\begin{equation*}
y(x)=-\frac{1}{3}\left(x^{2}+1\right)+\frac{C}{\sqrt{x^{2}+1}} . \tag{45}
\end{equation*}
$$

The general solution of $E q$ (44) can be written as the sum of two solutions

$$
y(x)=y_{h}+y_{p}
$$

where $y_{h}=\frac{C}{\sqrt{x^{2}+1}}$ is the general solution of $\frac{d y}{d x}+\frac{x}{1+x^{2}} y=0$,
and $y_{p}=-\frac{1}{3}\left(x^{2}+1\right)$ is a particular solution of the equation $\frac{d y}{d x}+\frac{x}{1+x^{2}} y=-x$.

## Example

Find the general solution of the differential equation

$$
\begin{equation*}
2(2 x y+4 y-3) d x+(x+2)^{2} d y=0, \quad x \neq-2 \tag{46}
\end{equation*}
$$

Eq (46) can be written in the form $\frac{d y}{d x}(x+2)^{2}+4 y(x+2)=6$, or $\frac{d y}{d x}+\frac{4}{x+2} y=\frac{6}{(x+2)^{2}}$.

Then $h(x)=e^{\int \frac{4}{x+2} d x}=e^{4 \ln |x+2|}=(x+2)^{4}$, thus
$y h(x)=y(x+2)^{4}=\int h(x) Q(x) d x=\int 6(x+2)^{2} d x=2(x+2)^{3}+C$.
Hence the general solution of $E q$ (46) is
$y(x)=\frac{2}{x+2}+C \frac{1}{(x+2)^{4}}$.

## Example

Find the initial value problem (IVP)

$$
\begin{gather*}
(y-x+x y \cot x) d x+x d y=0, \quad 0<x<\pi  \tag{47}\\
y\left(\frac{\pi}{2}\right)=0
\end{gather*}
$$

We have $x \frac{d y}{d x}+y(1+x \cot x)=x$, or $\frac{d y}{d x}+\left(\frac{1}{x}+\cot x\right) y=1$. Then

$$
h(x)=e^{\int\left(\frac{1}{x}+\cot x\right) d x}=e^{\ln x+\ln (\sin x)}=x \sin x .
$$

So the general solution of $E q$ (47) is

$$
h(x) y=x \sin x y(x)=\int x \sin x d x=-x \cos x+\sin x+C
$$

or

$$
y(x)=-\cot x+\frac{1}{x}+C \frac{1}{x \sin x} .
$$

Now we use the condition $y\left(\frac{\pi}{2}\right)=0$, to find the constant $C$. In fact

$$
y\left(\frac{\pi}{2}\right)=-(0)+\frac{2}{\pi}+C \frac{2}{\pi}=0 \Longrightarrow C=-1 .
$$

then the solution of the (IVP) (47) is

$$
y(x)=-\cot x+\frac{1}{x}-\frac{1}{x \sin x}
$$

## Example

Find the initial value problem (IVP)

$$
\left\{\begin{array}{c}
(x+1) \frac{d y}{d x}+(x+2) y=2 x e^{-x}, \quad x>-1,  \tag{48}\\
y(0)=1 .
\end{array}\right.
$$

We have $\frac{d y}{d x}+\left(1+\frac{1}{x+1}\right) y=\frac{2 x}{x+1} e^{-x}$. Then $h(x)=e^{\int\left(1+\frac{1}{x+1}\right) d x}=e^{x+\ln (x+1)}=(x+1) e^{x}$, and the general solution of $E q$ (48) is

$$
h(x) y=(x+1) e^{x} y=\int h(x) Q(x) d x=\int 2 x d x=x^{2}+C
$$

or $y(x)=\frac{x^{2}}{x+1} e^{-x}+C \frac{1}{x+1} e^{-x}$. From the condition $y(0)=1$, we deduce that $y(0)=0+C=1 \Longrightarrow C=1$. Hence the solution of (IVP) (48) is

$$
y(x)=\frac{x^{2}}{x+1} e^{-x}+\frac{1}{x+1} e^{-x}
$$

## Exercises

In exercises 1 through 9, find the general solution.
(1) $\left(x^{5}+3 y\right) d x-x d y=0$.
(2) $\left(2 x y+x^{2}+x^{4}\right) d x-\left(1+x^{2}\right) d y=0$.
(3) $\left(\left(y-\cos ^{2}(x)\right) d x+\cos x d y=0, \quad 0<x<\frac{\pi}{2}\right.$.
(a) $x^{2} y^{\prime}+x y=x+1$.
(5) $x \frac{d y}{d x}-y=x^{2} \sin x$.
(0) $x^{2} y^{\prime}+x(x+2) y=e^{x}$.
(1) $(x+1) \frac{d y}{d x}+(x+2) y=2 x e^{-x}$.
(8) $\frac{d y}{d x}-\frac{3}{x-1} y=(x-1)^{4}$.
(0) $y^{\prime}-\frac{x}{1+x^{2}}=-\frac{x}{1+x^{2}} y$.

In exercises 10 through 14, solve the initial value problem.

$$
\begin{aligned}
& \text { (10) }\left\{\begin{array}{c}
y^{\prime}-x y=\left(1-x^{2}\right) e^{\frac{1}{2} x^{2}} \\
y(0)=0
\end{array}\right. \\
& \text { (1) }\left\{\begin{array}{c}
(1-x) \frac{d y}{d x}+x y=x(x-1)^{2}, \\
y(5)=24 .
\end{array}\right.
\end{aligned}
$$

$$
\begin{aligned}
& \text { (12) }\left\{\begin{array}{c}
(2 x+3) y^{\prime}=y+(2 x+3)^{\frac{1}{2}} \\
y(-1)=0
\end{array}\right. \\
& \text { (3) }\left\{\begin{array}{c}
(3 x y+3 y-4) d x+(x+1)^{2} d y=0, \\
y(0)=1
\end{array}\right.
\end{aligned}
$$

(14) $\left\{\begin{array}{c}x\left(x^{2}+1\right) y^{\prime}+2 y=\left(x^{2}+1\right)^{3}, \\ y(1)=-1 .\end{array}\right.$
(15) Solve the differential equation $(x+a) y^{\prime}=b x-n y$, where $a, b$, and $n$ are constants with $n \neq 0, n \neq-1$.
(10) Solve the equation of exercise (48) for the exceptional cases $n=0$ and $n=-1$.
(17) In the standard form

$$
d y+P y d x=Q d x
$$

put $y=v w$, thus

$$
w(d v+P v d x)+v d w=Q d x
$$

then, by first choosing $v$ so that

$$
d v+P v d x=0
$$

and later determining $w$, show how to complete the solution

$$
d y+P y d x=Q d x
$$

## Bernoulli's Equation

Bernoulli's equation is a well known differential equation which has the general form

$$
\begin{equation*}
y^{\prime}+P(x) y=Q(x) y^{n} \tag{49}
\end{equation*}
$$

where $n \in \mathbb{R}$.
(1) If $n=0$ then $E q$ (49) is a linear first differential equation and we have discussed before.
(2) If $n=1, E q$ (49) becomes a differential equation with separable variables, so we solve it.
(3) Now we suppose that $n \neq 0$ and $n \neq 1$, we suppose also $y \neq 0$ on some interval $I=(a, b)$, then $E q$ (49) can be written in the form

$$
\begin{equation*}
y^{-n} y^{\prime}+P(x) y^{-n+1}=Q(x) \tag{50}
\end{equation*}
$$

Now we put $u=y^{-n+1}$, then we have

$$
u^{\prime}=(-n+1) y^{-n} y^{\prime},
$$

so $E q(50)$ becomes $\frac{1}{-n+1} u^{\prime}+P(x) u=Q(x)$, ,
or

$$
u^{\prime}+(-n+1) P(x) u=Q(x)(-n+1)
$$

is linear, and can be solved.

## Example

Solve the differential equation

$$
\begin{equation*}
y\left(6 y^{2}-x-1\right) d x+2 x d y=0, \quad x>0 \tag{52}
\end{equation*}
$$

First we write $E q$ (52) in the form

$$
y^{\prime}-\frac{x+1}{2 x} y=\frac{-3}{x} y^{3}
$$

so the obtained equation is a Bernoulli equation, where $n=3$.
Now suppose that $y \neq 0$ on some interval $I=(a, b)$, then $E q$ (52) can be written in the form

$$
\begin{equation*}
y^{\prime} y^{-3}-\frac{x+1}{2 x} y^{-2}=\frac{-3}{x} \tag{53}
\end{equation*}
$$

and put

$$
u=y^{-2} \Longrightarrow u^{\prime}=-2 y^{-3} y^{\prime}
$$

hence $E q$ (53) becomes

$$
\begin{equation*}
u^{\prime}+\frac{x+1}{x} u=\frac{6}{x} . \tag{54}
\end{equation*}
$$

This equation is linear and the integrating factor for $E q$ (54) is

$$
h(x)=e^{\int\left(1+\frac{1}{x}\right) d x}=x e^{x} .
$$

Then the solution of $E q$ (54) is

$$
x e^{x} u=6 e^{x}+C
$$

so the solution of $E q$ (52) is

$$
\begin{equation*}
y^{2}\left(6+C e^{-x}\right)=x \tag{55}
\end{equation*}
$$

## Example

Write the differential equation

$$
\begin{equation*}
3\left(1+x^{2}\right) \frac{d y}{d x}=2 x y\left(y^{3}-1\right) \tag{56}
\end{equation*}
$$

in the form of Bernoulli's equation an solve it, where $y \neq 0$ on some interval $I=(a, b)$.
$E q$ (56) can be written in the form

$$
\begin{equation*}
y^{\prime}+\frac{2 x}{3\left(x^{2}+1\right)} y=\frac{2 x}{3\left(x^{2}+1\right)} y^{4} \tag{57}
\end{equation*}
$$

So we have Bernoulli's equation with $n=4$. We divide Eq (57) by $y^{4}$ and we get

$$
\begin{equation*}
y^{\prime} y^{-4}+\frac{2 x}{3\left(x^{2}+1\right)} y^{-3}=\frac{2 x}{3\left(x^{2}+1\right)} \tag{58}
\end{equation*}
$$

Now we put $u=y^{-3}$, then

$$
u^{\prime}=-3 y^{-4} y^{\prime}
$$

and $E q$ (58) becomes

$$
\begin{equation*}
u^{\prime}-\frac{2 x}{\left(x^{2}+1\right)} u=-\frac{2 x}{\left(x^{2}+1\right)} \tag{59}
\end{equation*}
$$

$E q$ (59) is linear which has an integrating factor

$$
h(x)=\frac{1}{x^{2}+1} \Longrightarrow \frac{1}{x^{2}+1} u=\frac{1}{x^{2}+1}+C
$$

Then the solution of $E q(56)$ is

$$
\begin{equation*}
y^{3}\left[1+\left(x^{2}+1\right) C\right]=1 \tag{60}
\end{equation*}
$$

## Example

Find the solution of the initial value problem

$$
\left\{\begin{array}{c}
\left(2 y^{3}-x^{3}\right) d x+2 x y^{2} d y=0, \quad x>0  \tag{61}\\
y(1)=1
\end{array}\right.
$$

The differential equation in the (IVP) (61) can be written in the form

$$
\begin{equation*}
y^{\prime}+\frac{1}{x} y=\frac{x^{2}}{2} y^{-2} \tag{62}
\end{equation*}
$$

So $E q$ (62) is a Bernoulli equation with $n=-2$, and suppose that $y \neq 0$ on some interval $I=(a, b)$. From $E q(62)$ we deduce that

$$
y^{2} y^{\prime}+\frac{1}{x} y^{3}=\frac{x^{2}}{2}
$$

Put

$$
u=y^{3} \Longrightarrow u^{\prime}=3 y^{2} y^{\prime}
$$

hence we have

$$
\frac{1}{3} u^{\prime}+\frac{1}{x} u=\frac{x^{2}}{2} .
$$

or

$$
\begin{equation*}
u^{\prime}+\frac{3}{x} u=\frac{3}{2} x^{2} . \tag{63}
\end{equation*}
$$

Eq (63) is linear which has an integrating factor $h(x)=x^{3}$, then the solution of $E q$ (63) is

$$
u x^{3}=\frac{1}{4} x^{6}+C
$$

so the solution of the differential equation is

$$
\begin{equation*}
y^{3}=\frac{1}{4} x^{3}+\frac{1}{x^{3}} C \tag{64}
\end{equation*}
$$

Now we use the condition $y(1)=1$, then $C=\frac{3}{4}$, so the solution of the (IVP) (61) is

$$
\begin{equation*}
y^{3}=\frac{1}{4} x^{3}+\frac{3}{4 x^{3}} . \tag{65}
\end{equation*}
$$

