Chapter 4

Inheritance

RN Sity
N\ Duter and I nformation Sciences
or puter Science

KSU-CCIS-CS

Objectives

In this chapter you will learn:

» Thenotions of superclasses and subclasses.

How inheritance promotes software reusability.

* To use keyword extends to create a class that inherits attributes and
behaviors from another class.

e To use access modifier protected to give subclass methods access to
superclass members.

» To access superclass members with super.
 How constructors are used in inheritance hierarchies.

» The methods of class Object, the direct or indirect superclass of al

classesin Java
Dr. Salah harinnan nou-CCIS-CS

Introduction

2. Defining Classes with Inheritance

3. Inheritance and Member Accessibility
4. Inheritance Hierarchy

5. Declaring Subclasses

6. Inheritance and Constructors

Examples

KSU-CCIS-CS

1. Introduction

* |nheritance: isthe sharing of attributesand methods among classes. We

take a class (superclass), and then define other classes based on thefirst
one (subclass). The subclassinherit all the attributes and methods of the
superclass, but also have attributes and methods of their own.

— Softwar e reusability

— Create new classfrom existing class
» Absorb existing class' s data and behaviors

» Enhance with new capabilities

— Subclass extends super class
e Subclass
— More specialized group of objects
— Behaviorsinherited from superclass
e Can customize
— Additional behaviors

Dr.QJICUI naliiialn r\ou-\/\,IS-CS

Introduction

e Class hierarchy

— Direct superclass

 Inherited explicitly (onelevel up Communi tyMember
hierarchy)
— Indirect superclass

* Inherited two or more levels up

hierarchy : :
_ Singleinheritance Employee Student Alumnus

 Inherits from one superclass
— Multipleinheritance

* Inherits from multiple superclasses Faculty Staff
— Java does not support multiple
inheritance / \
Administrator Teacher

Theimportant relationship between a subclass and itssuperclassisthel S-A

relationship. The |S-A relationship must exist if inheritanceis used properly.
Dr. Salah Harinnanin nou-LCIS-CS

2. Defining Classes with Inheritance

e Case Study 1:

o Suppose we want implement a class Employee which has two
attributes, id and name, and some basic get- and set- methods for
the attributes.

— We want now define a PartTimeEmployee class; this class will
Inherit these attributes and methods, but can also have attributes
(hourlyPay) and methods of its own (cal culate\WeeklyPay).

Dr. Salah Hammami KSU-CCIS-CS

Defining Classes with Inheritance

An inheritancereationship usng UML

Employee

+id : string

+name : string

+Employee(in N : string, in E : string)
+setName(in N : string)
+getNumber() : string

+getName() : string

JAN

PartTimeEmployee

-hourlyPay : double

+PartTimeEmployee(in N : string, in E : string, in H : double)
+setHourlyPay(in H : double)

+getHourlyPay() : double

Dr. Salah Har{+calculateWeeklyPay(in c : int) : double K SU-CCIS-CS

3. Inheritance and Mem

We use the following visual representation of inheritance to illustrate data
member accessibility.

[] public
[] protected
[] private

This shows the inherited
components of the
superclass are part of the
subclass instance,

o0 L

KSU-CCIS-CS

The Effect of Three

‘Client

rSuper
Accessihility from ‘/f:[
the Client method e
5

Only public members, those defined
for the class and those inhented. are
visihle from outside. All else is

hidden from outside.

KSU-CCIS-CS

Accessibility of Super from Sub

e Everything except the private members of the Super classisvisible from a
method of the Sub class.

\ecessibility From a method
of the Sub class

o — Accessible
¥ — Inaccessible

-
From a method of Sub,

everything is visible excepl
the privale members of its
superclass.

h

Dr. Salah Hammami

rSub

[EI.

=

[X

!
r

it

T\—l’f

\ |

HI./

.

i

El

KSU-CCIS-CS

The »

The modifier Protected makes a data member or method visible and
accessible to the instances of the class and the descendant classes
(subclasses).

* Public data members and methods are accessible to everyone.

* Private data members and methods are accessible only to instances of
the class.

KSU-CCIS-CS

The Protected Modifier
An inheritancereationship usng UML

Employee

#id string _ The symbol # indicates
#name : string the protected members

+Employee(in N : string, in E : string)
+setName(in N : string)
+getNumber() : string

+getName() : string

JAN

PartTimeEmployee

-hourlyPay : double

+PartTimeEmployee(in N : string, in E : string, in H : double)
+setHourlyPay(in H : double)
+getHourlyPay() : double

Dr. Salah Har{+calculateWeeklyPay(in c : int) : double K SU-CCIS-CS

Case Study 2 Defining Classes with

— Suppose we want implement a class roster that contains both
undergraduate and graduate students.

— Each student’ s record will contain his or her name, three test scores, and
the final course grade.

— Theformulafor determining the course grade is different for graduate
students than for undergraduate students.

KSU-CCIS-CS

Modeling Two Typ *::‘*f‘s;:;;x

There are two ways to design the classes to model undergraduate and graduate
students.

— We can define two unrelated classes, one for undergraduates and one for
graduates.

— We can mode! the two kinds of students by using classes that are related in S
an inheritance hierarchy.

 Two classes are unrelated if they are not connected in an inheritance
relationship.

KSU-CCIS-CS

Classes for the Class Roster

e For the Class Roster sample, we design three classes:
— Student
— UndergraduateStudent
— GraduateStudent

 The Student classwill incorporate behavior and data common to both
Under graduateStudent and GraduateStudent objects.

 TheUndergraduateStudent class and the GraduateStudent class will each
contain behaviors and data specific to their respective objects.

Dr. Salah Hammami KSU-CCIS-CS

5. Declaring Subclasses

public class Student

{

[IDATA MEMBERS
protected String name;
protected int [] test;

Members to be inherited are
designated as protected

public class GraduateStudent extends Student

[IDATA MEMBERS

to inherit Student

NOoU-CULUTOo" U

extends alows GraduateStudent l

Dr. Salah Hammami

Implementation of Case

public class Employee public class PartTimeEmployee extends Employee

{ {
protected String number; private double hourlyPay;

protected String name; public PartTimeEmployeg(String N, String E, double H)

public Employee (String N, String E) {
{ number = N;
number = N; name = E;
name = E; hourlyPay = H;
} }
public void setName(String N) public void setHourlyPay(double H)
{ {
name = N; hourlyPay = H;
} }
public String getNumber() public double getHourlyPay()
{ {
return number; return hourlyPay;
} }
public String getName() public double calculateWeeklyPay(int c)
{ {
return name; return hourlyPay * c;
} }

}

}

PartTimeEmployee classtest program.

Dr. Salah Hammami

import java.util.Scanner;
public class PartTimeEmployeeTest {
public static void main(String[] args)

Scanner input = new Scanner(System.in);
String number, name;

double pay;

int hours;

PartTimeEmployee emp;

I get the details from the user

System.out.print ();
number = input.next();

System.out.print ();

name = input.next();

System.out.print ();

pay = input.Double();

System.out.print ()i
hours = input. Int();

/I create anew part-time employee
emp = new PartTimeEmployee (number, name, pay);

/ldisplay employee' s details, including the weekly pay
System.out.printin();
System.out.printin(emp.getName());
System.out.printin(emp.getNumber());
System.out.println(emp.cal cul ateWWeeklyPay (hours));

—
NOouU-LLUIIOLO

Implementation of Case Study 2:

class Student {

[** The number of tests this student took */

protected find satic int NUM_OF TESTS=3;

protected String name,
protected int[] test;
protected String courseGrade

public Student() { this ("No Name"); }

public Student(String studentName) {
name = studentName;
test = new intfNUM_OF TESTS];
courseGrade ="****";

}

public void setScore(int s1, int s2, int s3) {
test[0] = s1; test[1] = S2; test[2] = S3;

}

public String getCourseGrade() {

return courseGrade, }

public String getName() { return name; }

public int getTestScore(int testNumber) {
return test[testNumber-1]; }

public void setName(String newName) {
name = newName; }

class GraduateStudent extends Student {
/**
* students. Pass if total >= 80; otherwise, No Pass.
*/
public GraduateStudent(String na)
{ name = na;}
public void computeCourseGradg() {
int total = 0;
for (inti =0; i <NUM_OF TESTS; i++) {
total += tedt[i]; }
if (total >=80) {
courseGrade = "Pass";
} ese{ courseGrade="No Pass'; }

}
}
class UndergraduateStudent extends Student {
public UndergraduateStudent(String na)
{ name =na}
public void computeCourseGradg() {
int total = 0;
for (inti =0; 1 <NUM_OF TESTS; i++) {
total += test[i]; }
if (total / NUM_OF _TESTS >=70) {
courseGrade = "Pass’;
} dse{ courseGrade="No Pass’; }

}
}

Student classtest program

Since both undergraduate and graduate students are enrolled in a class,
It seems necessary for us to declare two separate arrays, one for graduate students
and another for undergraduate students:

GraduateStudent gradStudent [20];
UndergraduateStudent undergradStudent [20];

public class StudentTest {

public static void main(String[] args) {
GraduateStudent [] gradStudent= new GraduateStudent[20];
UndergraduateStudent [] undergradStudent= new UndergraduateStudent[20];

gradStudent[0] = new GraduateStudent("' Ramzi");
gradStudent[0].setScore (20, 30, 50);
gradStudent[0].computeCourseGradg();

System.out. printin(gradStudent [0].getCourseGrade());

undergradStudent[0] = new UndergraduateStudent ("Ahmed");
undergradStudent[0].setScore (10, 17, 13);
undergradStudent[0].computeCourseGrade();
System.out. println(undergradStudent[0].getCourseGradg());
}
}

Dr. Salah Hammami KSU-CCIS-CS

6. Inheritance and Constructors

« Unlike members of a superclass, constructors of a superclass are not inherited
by its subclasses.

 You must define a constructor for aclass or use the default constructor added
by the compiler.

A subclass uses a constructor from the base classto initialize all the data
inherited from the base class

— Inorder to invoke a constructor from the base class, it uses a specid

syntax:
public class SubClass extends SuperClass
{
super (.........);
}

DI’SBJah aliiialn T\OU'bL/IS'CS

Inheritance and Constructors

e A cadl to the base class constructor can never use the name of the
base class, but uses the keyword super instead

o A cal to super must aways be the first action taken in a constructor
definition

* Aninstance variable cannot be used as an argument to super

Dr. Salah Hammami KSU-CCIS-CS

Inheritance and Constructors

public class PartTimeEmployee extends Employee

{

public class Employee

{
protected String number;

protected String name;

private double hourlyPay;

public PartTimeEmployee(String N, String E, double H)

public Employee (String N, String E) {

{ number = N:
| name = E; hourlyPay = H;
}

public class PartTimeEmployee extends Employee

{
private double hourlyPay;

public PartTimeEmployeg(String N, String E, double H)

{

—pp super (N, E);
hourlyPay = H;

Call to superclass constructor to
Initialize members inherited from
superclass

Dr. Salah Hammami } S-CS

Case Study 3 : Inheritance Hierarchy of Class BankAccount

BankAcount

-name : string
#accNumber : string
-balance : double
+branchName : string

+BankAccount(in accNum : string, in nam : string, in bal : double) 1..*
+getName() : string

1

Bank

—

+name : string

+getAccNumber() : string

#getBalancer() : double

#setBalance(in bal : double)
+deposite(in amount : double)

#debit(in amount : double)

-sum(in a : double, in b : double) : double

Savings

-interestRate : double

Dr.

+Savings(in accNum : double, in nam : double, in bal : double, in rate : double)
+getinterest() : double

+addInterest()

+setinterestRate(in rate : double)

+display()

KSU-CCIS-CS

Implementation of Case Study 3:

public class BankAccount
{ protected String accNumber;
private String name;
private double balance;
public String branchName;
public BankAccount(String number, double bal,
String na, String branNa) {
accNumber = number; baance = bdl;
name = na; branchName =branNga;
}
public String getAccNumber () { return accNumber; }
private double sum(double a, double b) { return at+b;}
public copy(BankAccount client)
{ accNumber = client.accNumber;
name = client.name;
balance=client.balance;
branchName =client.branchName;
}
protected double getBalance() { return balance; }
protected void setBalance(double bl) { balance = bl;}
public String getName() { return name; }
public void deposite(double amount) {
balance=sum(balance , amount); }
protected void debit(double amount) {
if (amount > balance)

System.out.printin(" Sorry.. you cannot debit the''+amount);

dse balance=balance - amount;
1 1

public class Savings extends BankAccount
{
private double interestRate;
public Savings(String number, double bal, String na,
String bankNa, double rate) {
super(number, bal, na, bankNa);
InterestRate = rate;

}

public void setlnterestRate(double rate) {
interestRate = rate;

}

public double getinterestRate() { return
interestRate; }

public void addInterest() {
double interest = (getBalance()* intersetRate)/100;
setBalance(getBalance() + interest);

}

public void display() {
System.out.println(branchName+getName()+accNumber

+getBalancy));
}

KSU-CCIS-CS

public class Bank

public class BankAccountTest {

{ : o :)

private String name; {publlc static void main(String[] args)
pr!vate I_3ankA.ccount [] customer; Savings savAcc = new Savings("112233", 1000.0, "Ahmed",
private int nbc; "AlMalaz",10.0);
public Bank(int size, String na) R

{ : .

_ — savAcc.display();

crlljstom:ern—.neN BankAccount[size]; savAcc.debit(100.0); //--- object savAcc inherites method
n‘g?:eo-_ a debit from the superClass BankAccount

) ’ savAcc.display();

savAcc.addl nterest(); /--- object savAcc utilizes method
addl nterset from subClass

savAcc.display();

savAcc.deposite(10.5); //--- object savAcc inherites method

public boolean addCustomers(BankAccount client)

{

If (nbc < customers.length)

{ .
customergnbc++]= client; S:Vpgi (t; f(;lomI ;h((a) super Class BankAccount
return true; : sp} y();

}
else return fase }

}

- Branch Name : Al Malaz Custener nane : Ahmed Accunt namber: 112233 Bal ance : 1000.0
~ Branch Nane : Al Malaz Custermer name : Ahmed Accunt nanber: 112233 Bal ance : 900.0
- Branch Nane : Al Malaz Custener nanme : Ahned Accunt nanber: 112233 Bal ance : 990.0
- Branch Name : Al Malaz Custener nane : Ahmed Accunt namber: 112233 Bal ance : 1000.5

Case Study 4

Vehiccle

#name : string

#id : string

+Vehicle(in n : string, in d : string)
+set(in s : string, in X : string)

+display()
Foree (in ...)
Car
-seatNb : int
-year : int
-ncel :int
+Car(in n : string, in d : string, in s :int, in y : int, in size : int) CarElements
+display() 4 -code : string
+isFull() : bool 1 -price : double
+copyCar(in ca : Car) +CarElements(in ¢ : string, in p : double)
+addElement(in el : CarElements) : bool * |+CarElement(in E : CarElements)
+PriceCar() : double +display()
Frvrirneeens (in.........) +on(ina)
*
1
KsuCars
-nbc : int

+KsuCars(in size : int)
+display()

+isEmpty() : bool

+searchCar(in ce : string) : int
+getCar(in nm : string) : Car
+AveragePrice(in y : int) : double
o (in.......)

+remove(in s : string) : bool

Dr. Salah Hammami KSU-CCIS-CS

Question: Implement all the classes with all their methods using the following descriptions.

Description of the different classes:

Class Vehidle:
v" The method display () displays the name and the id.
A2 (in........) : if you need an other methods in this class you can add it.

Class CarElements:

v" The method display () displays the code and the price.

v+ (in........) : if you need an other methods in this class you can add it.
You can t add another constructor.

ClassCar:
seatNb : Number of seats
year : Production year of car
ncel : number of CarElementsobject currently in an object of the class Car.

And other attribute(s) deduced from the UML diagram.

display (): Displaysall the attributes of an object Car.
addElement (Car Elements €l): This method receives a CarElements object and adds it to the Car object.
priceCar(): Returns the sum of the CarElements price in an object of the class Car.

e (inLLolL) ¢ if youneed an other methods in this class you can add it.

LI NI NI N

Class KsuCars:
nbc :number of Car currently in an object of the class KsuCar.
And other attribute(s) deduced from the UML diagram.

v display (): Displays al the attributes of an object KsuCars.

v' search (String ce): This method receives a String representing the name of a Car object and returns the array index of the car

object.

v/ getCar (String nm): This method receives a String representing the id of a Car object and returns the Car object if it’sexist.
v' removeCar (String s): Removes a Car according to its name. It will return a value true if the operation has been completed

successfully, or false if not.

AN

+(in........) : if youneed an other methods in this class you can add it.

AveragePrice(int y): Calculates the average price of all car in an object of class KsuCars that produced after the year y.

