
Dr. Salah Hammami KSU-CCIS-CS

CSC 113
King Saud University
College of Computer and Information Sciences
Department of Computer Science

Dr. S. HAMMAMI

Chapter 4

Inheritance

Chapter 4

Inheritance

Dr. Salah Hammami KSU-CCIS-CS

Objectives
In this chapter you will learn:

• How inheritance promotes software reusability.

• The notions of superclasses and subclasses.

• To use keyword extends to create a class that inherits attributes and
behaviors from another class.

• To use access modifier protected to give subclass methods access to
superclass members.

• To access superclass members with super.

• How constructors are used in inheritance hierarchies.

• The methods of class Object, the direct or indirect superclass of all
classes in Java.

In this chapter you will learn:

• How inheritance promotes software reusability.

• The notions of superclasses and subclasses.

• To use keyword extends to create a class that inherits attributes and
behaviors from another class.

• To use access modifier protected to give subclass methods access to
superclass members.

• To access superclass members with super.

• How constructors are used in inheritance hierarchies.

• The methods of class Object, the direct or indirect superclass of all
classes in Java.

Dr. Salah Hammami KSU-CCIS-CS

1. Introduction

2. Defining Classes with Inheritance

3. Inheritance and Member Accessibility

4. Inheritance Hierarchy

5. Declaring Subclasses

6. Inheritance and Constructors

7. Examples

1. Introduction

2. Defining Classes with Inheritance

3. Inheritance and Member Accessibility

4. Inheritance Hierarchy

5. Declaring Subclasses

6. Inheritance and Constructors

7. Examples

OUTLINE

Dr. Salah Hammami KSU-CCIS-CS

1. Introduction
• Inheritance: is the sharing of attributes and methods among classes. We

take a class (superclass), and then define other classes based on the first
one (subclass). The subclass inherit all the attributes and methods of the
superclass, but also have attributes and methods of their own.

– Software reusability

– Create new class from existing class
• Absorb existing class’s data and behaviors
• Enhance with new capabilities

– Subclass extends superclass
• Subclass

– More specialized group of objects
– Behaviors inherited from superclass

• Can customize
– Additional behaviors

• Inheritance: is the sharing of attributes and methods among classes. We
take a class (superclass), and then define other classes based on the first
one (subclass). The subclass inherit all the attributes and methods of the
superclass, but also have attributes and methods of their own.

– Software reusability

– Create new class from existing class
• Absorb existing class’s data and behaviors
• Enhance with new capabilities

– Subclass extends superclass
• Subclass

– More specialized group of objects
– Behaviors inherited from superclass

• Can customize
– Additional behaviors

Dr. Salah Hammami KSU-CCIS-CS

• Class hierarchy

– Direct superclass
• Inherited explicitly (one level up

hierarchy)
– Indirect superclass

• Inherited two or more levels up
hierarchy

– Single inheritance
• Inherits from one superclass

– Multiple inheritance
• Inherits from multiple superclasses

– Java does not support multiple
inheritance

• Class hierarchy

– Direct superclass
• Inherited explicitly (one level up

hierarchy)
– Indirect superclass

• Inherited two or more levels up
hierarchy

– Single inheritance
• Inherits from one superclass

– Multiple inheritance
• Inherits from multiple superclasses

– Java does not support multiple
inheritance

Introduction

The important relationship between a subclass and its superclass is the IS-A
relationship. The IS-A relationship must exist if inheritance is used properly.
The important relationship between a subclass and its superclass is the IS-A
relationship. The IS-A relationship must exist if inheritance is used properly.

CommunityMember

Employee Student

StaffFaculty

Administrator Teacher

Alumnus

Dr. Salah Hammami KSU-CCIS-CS

2. Defining Classes with Inheritance

• Case Study 1:

• Suppose we want implement a class Employee which has two
attributes, id and name, and some basic get- and set- methods for
the attributes.

– We want now define a PartTimeEmployee class; this class will
inherit these attributes and methods, but can also have attributes
(hourlyPay) and methods of its own (calculateWeeklyPay).

• Case Study 1:

• Suppose we want implement a class Employee which has two
attributes, id and name, and some basic get- and set- methods for
the attributes.

– We want now define a PartTimeEmployee class; this class will
inherit these attributes and methods, but can also have attributes
(hourlyPay) and methods of its own (calculateWeeklyPay).

Dr. Salah Hammami KSU-CCIS-CS

+Employee(in N : string, in E : string)
+setName(in N : string)
+getNumber() : string
+getName() : string

+id : string
+name : string

Employee

+PartTimeEmployee(in N : string, in E : string, in H : double)
+setHourlyPay(in H : double)
+getHourlyPay() : double
+calculateWeeklyPay(in c : int) : double

-hourlyPay : double

PartTimeEmployee

An inheritance relationship using UML

Defining Classes with Inheritance

Dr. Salah Hammami KSU-CCIS-CS

3. Inheritance and Member Accessibility

• We use the following visual representation of inheritance to illustrate data
member accessibility.

• We use the following visual representation of inheritance to illustrate data
member accessibility.

Dr. Salah Hammami KSU-CCIS-CS

The Effect of Three Visibility Modifiers

Dr. Salah Hammami KSU-CCIS-CS

Accessibility of Super from Sub

• Everything except the private members of the Super class is visible from a
method of the Sub class.

• Everything except the private members of the Super class is visible from a
method of the Sub class.

Dr. Salah Hammami KSU-CCIS-CS

The Protected Modifier

• The modifier Protected makes a data member or method visible and
accessible to the instances of the class and the descendant classes
(subclasses).

• Public data members and methods are accessible to everyone.

• Private data members and methods are accessible only to instances of
the class.

• The modifier Protected makes a data member or method visible and
accessible to the instances of the class and the descendant classes
(subclasses).

• Public data members and methods are accessible to everyone.

• Private data members and methods are accessible only to instances of
the class.

Dr. Salah Hammami KSU-CCIS-CS

+Employee(in N : string, in E : string)
+setName(in N : string)
+getNumber() : string
+getName() : string

#id : string
#name : string

Employee

+PartTimeEmployee(in N : string, in E : string, in H : double)
+setHourlyPay(in H : double)
+getHourlyPay() : double
+calculateWeeklyPay(in c : int) : double

-hourlyPay : double

PartTimeEmployee

An inheritance relationship using UML

The symbol # indicates
the protected members

The Protected Modifier

Dr. Salah Hammami KSU-CCIS-CS

– Suppose we want implement a class roster that contains both
undergraduate and graduate students.

– Each student’s record will contain his or her name, three test scores, and
the final course grade.

– The formula for determining the course grade is different for graduate
students than for undergraduate students.

– Suppose we want implement a class roster that contains both
undergraduate and graduate students.

– Each student’s record will contain his or her name, three test scores, and
the final course grade.

– The formula for determining the course grade is different for graduate
students than for undergraduate students.

Defining Classes with InheritanceCase Study 2:

Dr. Salah Hammami KSU-CCIS-CS

Modeling Two Types of Students

• There are two ways to design the classes to model undergraduate and graduate
students.

– We can define two unrelated classes, one for undergraduates and one for
graduates.

– We can model the two kinds of students by using classes that are related in
an inheritance hierarchy.

• Two classes are unrelated if they are not connected in an inheritance
relationship.

• There are two ways to design the classes to model undergraduate and graduate
students.

– We can define two unrelated classes, one for undergraduates and one for
graduates.

– We can model the two kinds of students by using classes that are related in
an inheritance hierarchy.

• Two classes are unrelated if they are not connected in an inheritance
relationship.

Dr. Salah Hammami KSU-CCIS-CS

Classes for the Class Roster

• For the Class Roster sample, we design three classes:

– Student

– UndergraduateStudent

– GraduateStudent

• The Student class will incorporate behavior and data common to both
UndergraduateStudent and GraduateStudent objects.

• The UndergraduateStudent class and the GraduateStudent class will each
contain behaviors and data specific to their respective objects.

Dr. Salah Hammami KSU-CCIS-CS

4. Inheritance Hierarchy

Dr. Salah Hammami KSU-CCIS-CS

5. Declaring Subclasses

public class Student
{

//DATA MEMBERS
protected String name;
protected int [] test;
…..
…..

}

public class Student
{

//DATA MEMBERS
protected String name;
protected int [] test;
…..
…..

}

Members to be inherited are
designated as protected

public class GraduateStudent extends Student
{

//DATA MEMBERS
…..
…..

}

public class GraduateStudent extends Student
{

//DATA MEMBERS
…..
…..

}

extends allows GraduateStudent
to inherit Student

Dr. Salah Hammami KSU-CCIS-CS

Implementation of Case Study 1:

public class Employee
{

protected String number;
protected String name;

public Employee (String N, String E)
{

number = N;
name = E;

}

public void setName(String N)
{

name = N;
}

public String getNumber()
{

return number;
}

public String getName()
{

return name;
}

}

public class Employee
{

protected String number;
protected String name;

public Employee (String N, String E)
{

number = N;
name = E;

}

public void setName(String N)
{

name = N;
}

public String getNumber()
{

return number;
}

public String getName()
{

return name;
}

}

public class PartTimeEmployee extends Employee
{

private double hourlyPay;

public PartTimeEmployee(String N, String E, double H)
{

number = N;
name = E;
hourlyPay = H;

}

public void setHourlyPay(double H)
{

hourlyPay = H;
}

public double getHourlyPay()
{

return hourlyPay;
}

public double calculateWeeklyPay(int c)
{

return hourlyPay * c;
}

}

public class PartTimeEmployee extends Employee
{

private double hourlyPay;

public PartTimeEmployee(String N, String E, double H)
{

number = N;
name = E;
hourlyPay = H;

}

public void setHourlyPay(double H)
{

hourlyPay = H;
}

public double getHourlyPay()
{

return hourlyPay;
}

public double calculateWeeklyPay(int c)
{

return hourlyPay * c;
}

}

Dr. Salah Hammami KSU-CCIS-CS

import java.util.Scanner;
public class PartTimeEmployeeTest {

public static void main(String[] args)
{

Scanner input = new Scanner(System.in);
String number, name;
double pay;
int hours;
PartTimeEmployee emp;

// get the details from the user
System.out.print (“Employee Number?”);
number = input.next();
System.out.print (“Employee Name?”);
name = input.next();
System.out.print (“Hourly pay?”);
pay = input.Double();
System.out.print (“Hours worked this week?”);
hours = input.Int();

// create a new part-time employee
emp = new PartTimeEmployee (number, name, pay);

//display employee’s details, including the weekly pay
System.out.println();
System.out.println(emp.getName());
System.out.println(emp.getNumber());
System.out.println(emp.calculateWeeklyPay(hours));

}
}

import java.util.Scanner;
public class PartTimeEmployeeTest {

public static void main(String[] args)
{

Scanner input = new Scanner(System.in);
String number, name;
double pay;
int hours;
PartTimeEmployee emp;

// get the details from the user
System.out.print (“Employee Number?”);
number = input.next();
System.out.print (“Employee Name?”);
name = input.next();
System.out.print (“Hourly pay?”);
pay = input.Double();
System.out.print (“Hours worked this week?”);
hours = input.Int();

// create a new part-time employee
emp = new PartTimeEmployee (number, name, pay);

//display employee’s details, including the weekly pay
System.out.println();
System.out.println(emp.getName());
System.out.println(emp.getNumber());
System.out.println(emp.calculateWeeklyPay(hours));

}
}

PartTimeEmployee class test program.

Dr. Salah Hammami KSU-CCIS-CS

class Student {

/** The number of tests this student took */
protected final static int NUM_OF_TESTS = 3;
protected String name;
protected int[] test;
protected String courseGrade;

public Student() { this ("No Name"); }

public Student(String studentName) {
name = studentName;
test = new int[NUM_OF_TESTS];
courseGrade = "****";

}
public void setScore(int s1, int s2, int s3) {

test[0] = s1; test[1] = s2; test[2] = s3;
}

public String getCourseGrade() {
return courseGrade; }

public String getName() { return name; }

public int getTestScore(int testNumber) {
return test[testNumber-1]; }

public void setName(String newName) {
name = newName; }

}

class Student {

/** The number of tests this student took */
protected final static int NUM_OF_TESTS = 3;
protected String name;
protected int[] test;
protected String courseGrade;

public Student() { this ("No Name"); }

public Student(String studentName) {
name = studentName;
test = new int[NUM_OF_TESTS];
courseGrade = "****";

}
public void setScore(int s1, int s2, int s3) {

test[0] = s1; test[1] = s2; test[2] = s3;
}

public String getCourseGrade() {
return courseGrade; }

public String getName() { return name; }

public int getTestScore(int testNumber) {
return test[testNumber-1]; }

public void setName(String newName) {
name = newName; }

}

class GraduateStudent extends Student {
/**

* students. Pass if total >= 80; otherwise, No Pass.
*/
public GraduateStudent(String na)
{ name = na;}
public void computeCourseGrade() {

int total = 0;
for (int i = 0; i < NUM_OF_TESTS; i++) {

total += test[i]; }
if (total >= 80) {

courseGrade = "Pass";
} else { courseGrade = "No Pass"; }

}
}
class UndergraduateStudent extends Student {

public UndergraduateStudent(String na)
{ name = na;}
public void computeCourseGrade() {

int total = 0;
for (int i = 0; i < NUM_OF_TESTS; i++) {

total += test[i]; }
if (total / NUM_OF_TESTS >= 70) {

courseGrade = "Pass";
} else { courseGrade = "No Pass"; }

}
}

class GraduateStudent extends Student {
/**

* students. Pass if total >= 80; otherwise, No Pass.
*/
public GraduateStudent(String na)
{ name = na;}
public void computeCourseGrade() {

int total = 0;
for (int i = 0; i < NUM_OF_TESTS; i++) {

total += test[i]; }
if (total >= 80) {

courseGrade = "Pass";
} else { courseGrade = "No Pass"; }

}
}
class UndergraduateStudent extends Student {

public UndergraduateStudent(String na)
{ name = na;}
public void computeCourseGrade() {

int total = 0;
for (int i = 0; i < NUM_OF_TESTS; i++) {

total += test[i]; }
if (total / NUM_OF_TESTS >= 70) {

courseGrade = "Pass";
} else { courseGrade = "No Pass"; }

}
}

Implementation of Case Study 2:

Dr. Salah Hammami KSU-CCIS-CS

Since both undergraduate and graduate students are enrolled in a class,
It seems necessary for us to declare two separate arrays, one for graduate students
and another for undergraduate students:

GraduateStudent gradStudent [20];
UndergraduateStudent undergradStudent [20];

Student class test program

public class StudentTest {

public static void main(String[] args) {
GraduateStudent [] gradStudent= new GraduateStudent[20];
UndergraduateStudent [] undergradStudent= new UndergraduateStudent[20];

gradStudent[0] = new GraduateStudent("Ramzi");
gradStudent[0].setScore (20, 30, 50);
gradStudent[0].computeCourseGrade();
System.out.println(gradStudent [0].getCourseGrade());

undergradStudent[0] = new UndergraduateStudent ("Ahmed");
undergradStudent[0].setScore (10, 17, 13);
undergradStudent[0].computeCourseGrade();
System.out.println(undergradStudent[0].getCourseGrade());

}
}

Dr. Salah Hammami KSU-CCIS-CS

6. Inheritance and Constructors

• Unlike members of a superclass, constructors of a superclass are not inherited
by its subclasses.

• You must define a constructor for a class or use the default constructor added
by the compiler.

• A subclass uses a constructor from the base class to initialize all the data
inherited from the base class

– In order to invoke a constructor from the base class, it uses a special
syntax:

public class SubClass extends SuperClass
{

//DATA MEMBERS
….
// Constructors

super (………);
…….

}

Dr. Salah Hammami KSU-CCIS-CS

• A call to the base class constructor can never use the name of the
base class, but uses the keyword super instead

• A call to super must always be the first action taken in a constructor
definition

• An instance variable cannot be used as an argument to super

Inheritance and Constructors

Dr. Salah Hammami KSU-CCIS-CS

public class PartTimeEmployee extends Employee
{

private double hourlyPay;

……
}

public class PartTimeEmployee extends Employee
{

private double hourlyPay;

……
}

public class Employee
{

protected String number;
protected String name;

public Employee (String N, String E)
{

number = N;
name = E;

}

…….
}

public class Employee
{

protected String number;
protected String name;

public Employee (String N, String E)
{

number = N;
name = E;

}

…….
}

public class PartTimeEmployee extends Employee
{

private double hourlyPay;

public PartTimeEmployee(String N, String E, double H)
{

}

…….
}

public class PartTimeEmployee extends Employee
{

private double hourlyPay;

public PartTimeEmployee(String N, String E, double H)
{

}

…….
}

Call to superclass constructor to
initialize members inherited from
superclass

Inheritance and Constructors

public PartTimeEmployee(String N, String E, double H)
{

number = N;
name = E;
hourlyPay = H;

}

super (N, E);
hourlyPay = H;

Dr. Salah Hammami KSU-CCIS-CS

Case Study 3 : Inheritance Hierarchy of Class BankAccount

+BankAccount(in accNum : string, in nam : string, in bal : double)
+getName() : string
+getAccNumber() : string
#getBalancer() : double
#setBalance(in bal : double)
+deposite(in amount : double)
#debit(in amount : double)
-sum(in a : double, in b : double) : double

-name : string
#accNumber : string
-balance : double
+branchName : string

BankAcount

+Savings(in accNum : double, in nam : double, in bal : double, in rate : double)
+getInterest() : double
+addInterest()
+setInterestRate(in rate : double)
+display()

-interestRate : double

Savings

+name : string

Bank1

1..*

Dr. Salah Hammami KSU-CCIS-CS

public class BankAccount
{ protected String accNumber;

private String name;
private double balance;
public String branchName;
public BankAccount(String number, double bal,

String na , String branNa) {
accNumber = number; balance = bal;
name = na; branchName =branNa;

}
public String getAccNumber() {return accNumber; }
private double sum(double a, double b) {return a+b;}
public copy(BankAccount client)
{ accNumber = client.accNumber;

name = client.name;
balance=client.balance;
branchName =client.branchName;

}
protected double getBalance() {return balance; }
protected void setBalance(double bl) { balance = bl;}
public String getName() {return name; }
public void deposite(double amount) {

balance=sum(balance , amount); }
protected void debit(double amount) {

if (amount > balance)
System.out.println("Sorry.. you cannot debit the"+amount);
else balance=balance - amount;
} }

public class BankAccount
{ protected String accNumber;

private String name;
private double balance;
public String branchName;
public BankAccount(String number, double bal,

String na , String branNa) {
accNumber = number; balance = bal;
name = na; branchName =branNa;

}
public String getAccNumber() {return accNumber; }
private double sum(double a, double b) {return a+b;}
public copy(BankAccount client)
{ accNumber = client.accNumber;

name = client.name;
balance=client.balance;
branchName =client.branchName;

}
protected double getBalance() {return balance; }
protected void setBalance(double bl) { balance = bl;}
public String getName() {return name; }
public void deposite(double amount) {

balance=sum(balance , amount); }
protected void debit(double amount) {

if (amount > balance)
System.out.println("Sorry.. you cannot debit the"+amount);
else balance=balance - amount;
} }

public class Savings extends BankAccount
{
private double interestRate;
public Savings(String number, double bal, String na,
String bankNa, double rate) {

super(number, bal, na, bankNa);
interestRate = rate;
}

public void setInterestRate(double rate) {
interestRate = rate;
}

public double getInterestRate() { return
interestRate; }

public void addInterest() {
double interest = (getBalance()* intersetRate)/100;

setBalance(getBalance() + interest);
}

public void display() {
System.out.println(branchName+getName()+accNumber
+getBalance());
}

public class Savings extends BankAccount
{
private double interestRate;
public Savings(String number, double bal, String na,
String bankNa, double rate) {

super(number, bal, na, bankNa);
interestRate = rate;
}

public void setInterestRate(double rate) {
interestRate = rate;
}

public double getInterestRate() { return
interestRate; }

public void addInterest() {
double interest = (getBalance()* intersetRate)/100;

setBalance(getBalance() + interest);
}

public void display() {
System.out.println(branchName+getName()+accNumber
+getBalance());
}

Implementation of Case Study 3:

Dr. Salah Hammami KSU-CCIS-CS

public class Bank
{

private String name;
private BankAccount [] customer;
private int nbc;
public Bank(int size, String na)

{
customer = new BankAccount[size];
name = na;
nbc=0;

}
public boolean addCustomers(BankAccount client)

{
if (nbc < customers.length)

{
customers[nbc++]= client;
return true;

}
else return false;

}

public class Bank
{

private String name;
private BankAccount [] customer;
private int nbc;
public Bank(int size, String na)

{
customer = new BankAccount[size];
name = na;
nbc=0;

}
public boolean addCustomers(BankAccount client)

{
if (nbc < customers.length)

{
customers[nbc++]= client;
return true;

}
else return false;

}

public class BankAccountTest {
public static void main(String[] args)
{

Savings savAcc = new Savings("112233", 1000.0, "Ahmed",
"AlMalaz",10.0);

savAcc.display();
savAcc.debit(100.0); //--- object savAcc inherites method
debit from the superClass BankAccount
savAcc.display();

savAcc.addInterest(); //--- object savAcc utilizes method
addInterset from subClass
savAcc.display();
savAcc.deposite(10.5); //--- object savAcc inherites method
deposit from the superClass BankAccount
savAcc.display();

}
}

public class BankAccountTest {
public static void main(String[] args)
{

Savings savAcc = new Savings("112233", 1000.0, "Ahmed",
"AlMalaz",10.0);

savAcc.display();
savAcc.debit(100.0); //--- object savAcc inherites method
debit from the superClass BankAccount
savAcc.display();

savAcc.addInterest(); //--- object savAcc utilizes method
addInterset from subClass
savAcc.display();
savAcc.deposite(10.5); //--- object savAcc inherites method
deposit from the superClass BankAccount
savAcc.display();

}
}

------------------Execution of the program BankAccountTest-------------------------

Branch Name : AlMalaz Custemer name : Ahmed Accunt namber: 112233 Balance : 1000.0
Branch Name : AlMalaz Custemer name : Ahmed Accunt namber: 112233 Balance : 900.0
Branch Name : AlMalaz Custemer name : Ahmed Accunt namber: 112233 Balance : 990.0
Branch Name : AlMalaz Custemer name : Ahmed Accunt namber: 112233 Balance : 1000.5

------------------Execution of the program BankAccountTest-------------------------

Branch Name : AlMalaz Custemer name : Ahmed Accunt namber: 112233 Balance : 1000.0
Branch Name : AlMalaz Custemer name : Ahmed Accunt namber: 112233 Balance : 900.0
Branch Name : AlMalaz Custemer name : Ahmed Accunt namber: 112233 Balance : 990.0
Branch Name : AlMalaz Custemer name : Ahmed Accunt namber: 112233 Balance : 1000.5

Dr. Salah Hammami KSU-CCIS-CS

Case Study 4

+Vehicle(in n : string, in d : string)
+set(in s : string, in x : string)
+display()
+.........(in)

#name : string
#id : string

Vehiccle

+Car(in n : string, in d : string, in s : int, in y : int, in size : int)
+display()
+isFull() : bool
+copyCar(in ca : Car)
+addElement(in el : CarElements) : bool
+PriceCar() : double
+...........(in)

-seatNb : int
-year : int
-ncel : int

Car

+CarElements(in c : string, in p : double)
+CarElement(in E : CarElements)
+display()
+.....(in)

-code : string
-price : double

CarElements

1

*

+KsuCars(in size : int)
+display()
+isEmpty() : bool
+searchCar(in ce : string) : int
+getCar(in nm : string) : Car
+AveragePrice(in y : int) : double
+.........(in)
+remove(in s : string) : bool

-nbc : int

KsuCars

1

*

Dr. Salah Hammami KSU-CCIS-CS

Question: Implement all the classes with all their methods using the following descriptions.

Description of the different classes:

Class Vehicle:
ü The method display () displays the name and the id.
ü + …….. (in ……..) : if you need an other methods in this class you can add it.

Class CarElements :
ü The method display () displays the code and the price.
ü + …….. (in ……..) : if you need an other methods in this class you can add it.
You can’t add another constructor.

Class Car:
• seatNb : Number of seats
• year : Production year of car
• ncel : number of CarElements object currently in an object of the class Car.
• And other attribute(s) deduced from the UML diagram.

ü display (): Displays all the attributes of an object Car.
ü addElement (CarElements el): This method receives a CarElements object and adds it to the Car object.
ü priceCar(): Returns the sum of the CarElements price in an object of the class Car.
+ …….. (in ……..) : if you need an other methods in this class you can add it.

Class KsuCars:
• nbc : number of Car currently in an object of the class KsuCar.
• And other attribute(s) deduced from the UML diagram.

ü display (): Displays all the attributes of an object KsuCars.
ü search (String ce): This method receives a String representing the name of a Car object and returns the array index of the car

object.
ü getCar (String nm): This method receives a String representing the id of a Car object and returns the Car object if it’s exist.
ü removeCar (String s): Removes a Car according to its name. It will return a value true if the operation has been completed

successfully, or false if not.
ü AveragePrice(int y): Calculates the average price of all car in an object of class KsuCars that produced after the year y.
ü + …….. (in ……..) : if you need an other methods in this class you can add it.

