An ideal gas is compressed from 6 L to 4 L at constant temperature and external pressure of 5 atm. How much work (in atm.L) is done on the gas?

A)
$$-10$$

$$C) -30$$

D)
$$+30$$

(B) +10
$$W = -P\Delta V$$

 $W = -5*(4-6)$
D) +30 $= +10 \text{ cdm.L}$

If the internal energy of a system increased in by 80 J and has 50 J of work done on it, the heat change

of the system (in J) is:

$$A) - 130$$

$$C) + 130$$

D)
$$-30$$

$$\Delta E = 9 + W$$
(B) +30 $w = +50$ T
(D) -30 $80 = 9 + 50$
 $9 = 80 - 50 = +30$ T

If a 100 g of water cools from 25°C and release 1.25 kJ as a heat. What is the final temperature of the water? (specific heat of water (s) = $4.18 \text{ J/g.}^{\circ}\text{C}$)

A) 18

B) 3 $9 = m5 \Delta t$ D) 11 $-i250 = icc + 4.18 + (T_2 - 25)$ $T_2 = 25 - 5 = 22 \%$

Given the following reactions

$$Fe_2O_3(s) + 3CO(g) \rightarrow 2Fe(s) + 3CO_2(g)$$
 $\Delta H = -28.0 \text{ kJ}$

$$3Fe(s) + 4CO_2(g) \rightarrow 4CO(g) + Fe_3O_4(s) \Delta H = +12.5 \text{ kJ}$$

the enthalpy of the following reaction in (kJ) is:

$$3Fe_2O_3(s) + CO(g) \rightarrow CO_2(g) + 2Fe_3O_4(s)$$

A)
$$+59$$

$$C) - 109$$

$$B) + 109$$

Given the following information:

Thermochemical Reaction	ΔH ^o (in kJ)
$Na(s) + H2O(l) \rightarrow NaOH(s) + 1/2H2(g)$	-146
$Na_2SO_4(s) + H_2O(l) \rightarrow 2NaOH(s) + SO_3(g)$	+418
$2Na_2O(s) + 2H_2(g) \rightarrow 4Na(s) + 2H_2O(1)$	+259

The change in enthalpy of the following reaction (in

kJ.mol⁻¹) is: Na₂O(s) + SO₃(g)
$$\rightarrow$$
 Na₂SO₄(g)

$$A) +531$$

$$C) + 255$$

D)
$$-435$$

The ΔH° for the following reaction at 298 K is

$$-36.4 \text{ kJ}$$
: $1/2 \text{ H}_2(g) + 1/2 \text{ Br}_2(l) \rightarrow \text{HBr}(g)$

The internal energy change " ΔE^{o} " (in kJ), is:

A) -37.6

B) -35.2

$$\Delta E = \Delta H - R + \Delta n$$
 $\Delta E = \Delta H - R + \Delta n$
 $\Delta v = 1 - \frac{1}{2} = \frac{1}{2}$

C)
$$-36.4$$
 D) -38.6

Calculate ΔH^o for the following reaction (in kJ/mol) at 25°C:

	Fe ₃ O ₄ (s)	$+$ CO(g) \rightarrow	3FeO(s)	+ CO ₂ (g)	
ΔH _f ° (kJ/mol)	-1118	-110.5	-272	-393.5	
A) -50		B)+ 19	DHAM	= EDHp - EDH	R
C) -263		D) +109			

The value of ΔE for a system that performs 23 kJ of work on its surroundings and loses 79 kJ of heat is

kJ		DE=q+w	
A)-102	B) +102	$\omega = -23kT$ $Q = -79KT$	
C) - 79	D) +23	7-	

Which of the following reaction has $\Delta H = \Delta E$?

A)
$$2C(s) + O_2(g) \rightarrow 2CO(g)$$

$$\Delta E = \Delta H - RT \Delta n$$
B) $H_2(g) + I_2(g) \rightarrow 2HI(g)$

$$\Delta H = \Delta E$$
C) $\Delta H = \Delta E$

C)
$$N_2(g) + 3H_2(g) \rightarrow 2NH_3(g)$$

D)
$$N_2H_4(g) + O_2(g) \rightarrow N_2(g) + 2H_2O(l)$$

All of the following has a standard heat of formation (ΔH^{o}_{f}) value of zero except:

(A) H(g)

B) Fe(s)

C) Hg(l)

D) Ne(g)

A gas is compressed in a cylinder from a volume of 20.0 L to 2.0 L by a constant pressure of 10.0 atm.

Calculate the amount of work done in "J"?

A)
$$-1.82 \times 10^4$$

C)
$$-1.01 \times 10^4$$

(B)
$$1.82 \times 10^4$$
 $4 = 20 L$