
Chapter 5

Exceptions

CSC 113
King Saud University
College of Computer and Information Sciences
Department of Computer Science

Dr. S. HAMMAMI

Objectives

• After you have read and studied this chapter, you should
be able to

– Improve the reliability of code by incorporating exception-handling
and assertion mechanisms.

– Write methods that propagate exceptions.

– Implement the try-catch blocks for catching and handling
exceptions.

– Write programmer-defined exception classes.

– Distinguish the checked and unchecked, or runtime, exceptions.

• After you have read and studied this chapter, you should
be able to

– Improve the reliability of code by incorporating exception-handling
and assertion mechanisms.

– Write methods that propagate exceptions.

– Implement the try-catch blocks for catching and handling
exceptions.

– Write programmer-defined exception classes.

– Distinguish the checked and unchecked, or runtime, exceptions.

Introduction to Exception Handling

• No matter how well designed a program is, there is always the chance that
some kind of error will arise during its execution.

• A well-designed program should include code to handle errors and other
exceptional conditions when they arise.

• Sometimes the best outcome can be when nothing unusual happens

• However, the case where exceptional things happen must also be
prepared for

– Java exception handling facilities are used when the invocation of
a method may cause something exceptional to occur

• No matter how well designed a program is, there is always the chance that
some kind of error will arise during its execution.

• A well-designed program should include code to handle errors and other
exceptional conditions when they arise.

• Sometimes the best outcome can be when nothing unusual happens

• However, the case where exceptional things happen must also be
prepared for

– Java exception handling facilities are used when the invocation of
a method may cause something exceptional to occur

Introduction to Exception Handling

• Java library software (or programmer-defined code)
provides a mechanism that signals when something
unusual happens

– This is called throwing an exception

• In another place in the program, the programmer
must provide code that deals with the exceptional
case

– This is called handling the exception

• Java library software (or programmer-defined code)
provides a mechanism that signals when something
unusual happens

– This is called throwing an exception

• In another place in the program, the programmer
must provide code that deals with the exceptional
case

– This is called handling the exception

Definition

• An exception represents an error condition that
can occur during the normal course of program
execution.

• When an exception occurs, or is thrown, the
normal sequence of flow is terminated.

• The exception-handling routine is then executed;
we say the thrown exception is caught.

• An exception represents an error condition that
can occur during the normal course of program
execution.

• When an exception occurs, or is thrown, the
normal sequence of flow is terminated.

• The exception-handling routine is then executed;
we say the thrown exception is caught.

Not Catching Exceptions

• The avgFirstN() method expects that N > 0.
• If N = 0, a divide-by-zero error occurs in avg/N.
• The avgFirstN() method expects that N > 0.
• If N = 0, a divide-by-zero error occurs in avg/N.

/**
* Precondition: N > 0
* Postcondition: avgFirstN() equals the average of (1+2+…+N)
*/

public double avgFirstN(int N) {
duuble sum = 0;
for (int k = 1; k <= N; k++)

sum += k;
return sum/N; // What if N is 0 ??

} // avgFirstN()

Bad Design: Doesn’t
guard against divide-by-0.

Not Catching Exceptions
class AgeInputVer1 {

private int age;

public void setAge(String s) {

age = Integer.parseInt(s);

}

public int getAge() {

return age;

}

}

class AgeInputVer1 {

private int age;

public void setAge(String s) {

age = Integer.parseInt(s);

}

public int getAge() {

return age;

}

}

public class AgeInputMain1 {

public static void main(String[] args) {

AgeInputVer1 P = new AgeInputVer1();

P.setAge("nine");

System.out.println(P.getAge());

}

}

public class AgeInputMain1 {

public static void main(String[] args) {

AgeInputVer1 P = new AgeInputVer1();

P.setAge("nine");

System.out.println(P.getAge());

}

}

Exception in thread "main"
java.lang.NumberFormatException: For input string: "nine"

at java.lang.NumberFormatException.forInputString(Unknown
Source)

at java.lang.Integer.parseInt(Unknown Source)

at java.lang.Integer.parseInt(Unknown Source)

at AgeInputVer1.setAge(AgeInputVer1.java:5)

at AgeInputMain1.main(AgeInputMain1.java:8)

Exception in thread "main"
java.lang.NumberFormatException: For input string: "nine"

at java.lang.NumberFormatException.forInputString(Unknown
Source)

at java.lang.Integer.parseInt(Unknown Source)

at java.lang.Integer.parseInt(Unknown Source)

at AgeInputVer1.setAge(AgeInputVer1.java:5)

at AgeInputMain1.main(AgeInputMain1.java:8)

Error message for
invalid input

Not Catching Exceptions

class AgeInputVer1 {

private int age;

public void setAge(String s) {

age = Integer.parseInt(s);

}

public int getAge() {

return age;

}

}

class AgeInputVer1 {

private int age;

public void setAge(String s) {

age = Integer.parseInt(s);

}

public int getAge() {

return age;

}

}

public class AgeInputMain2 {

public static void main(String[] args) {

AgeInputVer1 P = new AgeInputVer1();

P.setAge("9");

System.out.println(P.getAge());

}

}

public class AgeInputMain2 {

public static void main(String[] args) {

AgeInputVer1 P = new AgeInputVer1();

P.setAge("9");

System.out.println(P.getAge());

}

}

9

Java’s Exception Hierarchy

• Unchecked exceptions: belong to a subclass of
RuntimeException and are not monitored by the compiler.

Some Important Exceptions

Class Description
ArithmeticException Division by zero or some other kind of arithmetic problem

ArrayIndexOutOfBounds- An array index is less than zero or Exception greater than or
equal to the array's length

FileNotFoundException Reference to a unfound file IllegalArgumentException
Method call with improper argument

IndexOutOfBoundsException An array or string index out of bounds

NullPointerException Reference to an object which has not been instantiated

NumberFormatException Use of an illegal number format, such as when calling a method

StringIndexOutOfBoundsException A String index less than zero or greater than or equal
to the String's length

Class Description
ArithmeticException Division by zero or some other kind of arithmetic problem

ArrayIndexOutOfBounds- An array index is less than zero or Exception greater than or
equal to the array's length

FileNotFoundException Reference to a unfound file IllegalArgumentException
Method call with improper argument

IndexOutOfBoundsException An array or string index out of bounds

NullPointerException Reference to an object which has not been instantiated

NumberFormatException Use of an illegal number format, such as when calling a method

StringIndexOutOfBoundsException A String index less than zero or greater than or equal
to the String's length

Catching an Exception

class AgeInputVer2 {

private int age

public void setAge(String s)

{

try {

age = Integer.parseInt(s);

} catch (NumberFormatException e){

System.out.Println(“age is invalid, Please enter digits only");

}

}

public int getAge() { return age; }

}

class AgeInputVer2 {

private int age

public void setAge(String s)

{

try {

age = Integer.parseInt(s);

} catch (NumberFormatException e){

System.out.Println(“age is invalid, Please enter digits only");

}

}

public int getAge() { return age; }

}

try

catch

We are catching the number format
exception, and the parameter e
represents an instance of the

NumberFormatException class

Catching an Exception

import java.util.Scanner;

class AgeInputVer3 {

private int age;
public void setAge(String s) {

String m =s;

Scanner input = new Scanner(System.in);

boolean ok = true;

while (ok) {

try {
age = Integer.parseInt(m);
ok = false;

} catch (NumberFormatException e){
System.out.println(“age is invalid, Please enter digits only");
m = input.next();

}
}

public int getAge() { return age; }

}

import java.util.Scanner;

class AgeInputVer3 {

private int age;
public void setAge(String s) {

String m =s;

Scanner input = new Scanner(System.in);

boolean ok = true;

while (ok) {

try {
age = Integer.parseInt(m);
ok = false;

} catch (NumberFormatException e){
System.out.println(“age is invalid, Please enter digits only");
m = input.next();

}
}

public int getAge() { return age; }

}

This statement
is executed only
if no exception
is thrown by
parseInt.

This statement
is executed only
if no exception
is thrown by
parseInt.

To accomplish this repetition, we will put the whole try-catch statement in side a loop:

try-catch Control Flow

The Exception Class: Getting Information

• There are two methods we can call to get information about the thrown exception:
– getMessage
– printStackTrace

Simple: only
constructor
methods.

The Exception Class: Getting Information

try {

. . .

} catch (NumberFormatException e){

System.out.println(e.getMessage());

System.out.println(e.printStackTrace());

}

We are catching the number format
exception, and the parameter e represents an
instance of the NumberFormatException
class

For input string: "nine"

java.lang.NumberFormatException: For input string: "nine"

at java.lang.NumberFormatException.forInputString(Unknown Source)

at java.lang.Integer.parseInt(Unknown Source)

at java.lang.Integer.parseInt(Unknown Source)

at AgeInputVer1.setAge(AgeInputVer1.java:11)

at AgeInputMain1.main(AgeInputMain1.java:8)

try-throw-catch Mechanism

throw new
ExceptionClassName(PossiblySomeArguments);

• When an exception is thrown, the execution of the surrounding try block is stopped

– Normally, the flow of control is transferred to another portion of code known as the
catch block

• The value thrown is the argument to the throw operator, and is always an object of some
exception class

– The execution of a throw statement is called throwing an exception

throw new
ExceptionClassName(PossiblySomeArguments);

• When an exception is thrown, the execution of the surrounding try block is stopped

– Normally, the flow of control is transferred to another portion of code known as the
catch block

• The value thrown is the argument to the throw operator, and is always an object of some
exception class

– The execution of a throw statement is called throwing an exception

try-throw-catch Mechanism

• A throw statement is similar to a method call:

– throw new ExceptionClassName(SomeString);

– In the above example, the object of class ExceptionClassName is created using a
string as its argument

– This object, which is an argument to the throw operator, is the exception object
thrown

• Instead of calling a method, a throw statement calls a catch block

• A throw statement is similar to a method call:

– throw new ExceptionClassName(SomeString);

– In the above example, the object of class ExceptionClassName is created using a
string as its argument

– This object, which is an argument to the throw operator, is the exception object
thrown

• Instead of calling a method, a throw statement calls a catch block

try-throw-catch Mechanism

• When an exception is thrown, the catch block begins execution

– The catch block has one parameter

– The exception object thrown is plugged in for the catch block parameter

• The execution of the catch block is called catching the exception, or handling the
exception

– Whenever an exception is thrown, it should ultimately be handled (or caught) by
some catch block

• When an exception is thrown, the catch block begins execution

– The catch block has one parameter

– The exception object thrown is plugged in for the catch block parameter

• The execution of the catch block is called catching the exception, or handling the
exception

– Whenever an exception is thrown, it should ultimately be handled (or caught) by
some catch block

try-throw-catch Mechanism

• When a try block is executed, two things can happen:
1. No exception is thrown in the try block

– The code in the try block is executed to the end of the block
– The catch block is skipped
– The execution continues with the code placed after the
catch block

• When a try block is executed, two things can happen:
1. No exception is thrown in the try block

– The code in the try block is executed to the end of the block
– The catch block is skipped
– The execution continues with the code placed after the
catch block

• 2. An exception is thrown in the try block and caught in the catch
block

The rest of the code in the try block is skipped
Control is transferred to a following catch block (in simple cases)
The thrown object is plugged in for the catch block parameter
The code in the catch block is executed
The code that follows that catch block is executed (if any)

• 2. An exception is thrown in the try block and caught in the catch
block

The rest of the code in the try block is skipped
Control is transferred to a following catch block (in simple cases)
The thrown object is plugged in for the catch block parameter
The code in the catch block is executed
The code that follows that catch block is executed (if any)

public class CalcAverage {
public double avgFirstN(int N){
double sum = 0;
try {

if (N <=0)
throw new Exception("ERROR: Can't average 0 elements");
for (int k = 1; k <= N; k++)
sum += k;

return sum/N;
}

}

public class CalcAverage {
public double avgFirstN(int N){
double sum = 0;
try {
if (N <0)
throw new Exception("ERROR: Can't average negative elements");
for (int k = 1; k <= N; k++)
sum += k;

return sum/N;
}
catch(ArithmeticException e)
{
System.out.println(e.getmessage());
System.out.println(“N=Zero is an valid denomiattor, please try again ");
}
catch (Exception e) {System.out.println e.getmessage() + “Please enter

positive integer”);}
}

}

Multiple catch Blocks

• A try block can potentially throw any number of exception values,
and they can be of differing types
– In any one execution of a try block, at most one exception can

be thrown (since a throw statement ends the execution of the try
block)

– However, different types of exception values can be thrown on
different executions of the try block

• A try block can potentially throw any number of exception values,
and they can be of differing types
– In any one execution of a try block, at most one exception can

be thrown (since a throw statement ends the execution of the try
block)

– However, different types of exception values can be thrown on
different executions of the try block

• Each catch block can only catch values of the exception class type
given in the catch block heading

• Different types of exceptions can be caught by placing more than
one catch block after a try block
– Any number of catch blocks can be included, but they must be

placed in the correct order

• Each catch block can only catch values of the exception class type
given in the catch block heading

• Different types of exceptions can be caught by placing more than
one catch block after a try block
– Any number of catch blocks can be included, but they must be

placed in the correct order

Multiple catch Blocks

Multiple catch Control Flow

import java.util.*; //InputMismatchException;

//import java.util.ArithmeticException;

public class DividbyZero2

{ public static void main (String args[]) //throws ArithmeticException

{ Scanner input = new Scanner(System.in);

boolean done=false;

do {

try

{System.out.print("Please enter an integer number : ");

int a =input.nextInt();

System.out.print("Please enter an integer number : ");

int b =input.nextInt();

int c=a/b;

System.out.println("a ="+ a +" b= "+b+ " amd quotient ="+c);

done=true;

}

import java.util.*; //InputMismatchException;

//import java.util.ArithmeticException;

public class DividbyZero2

{ public static void main (String args[]) //throws ArithmeticException

{ Scanner input = new Scanner(System.in);

boolean done=false;

do {

try

{System.out.print("Please enter an integer number : ");

int a =input.nextInt();

System.out.print("Please enter an integer number : ");

int b =input.nextInt();

int c=a/b;

System.out.println("a ="+ a +" b= "+b+ " amd quotient ="+c);

done=true;

}

catch (InputMismatchException var1)

{ System.out.println("Exception :"+ var1);

System.out.println("please try again: ");

}

catch(ArithmeticException var2)

{

System.out.println("\nException :"+ var2);

System.out.println("Zero is an valid denomiattor");

}

}while(!done);

}

}

catch (InputMismatchException var1)

{ System.out.println("Exception :"+ var1);

System.out.println("please try again: ");

}

catch(ArithmeticException var2)

{

System.out.println("\nException :"+ var2);

System.out.println("Zero is an valid denomiattor");

}

}while(!done);

}

}

Multiple catch Control Flow: Example

Please enter an integer number : car

Exception :java.util.InputMismatchException

You must enter an integer value, please try again:

Please enter an integer number : 14

Please enter an integer number : 0

Exception :java.lang.ArithmeticException: / by zero

Zero is an valid denomiattor, please try again

Please enter an integer number : 7

Please enter an integer number : 3

a =7 b= 3 amd quotient =2

Please enter an integer number : car

Exception :java.util.InputMismatchException

You must enter an integer value, please try again:

Please enter an integer number : 14

Please enter an integer number : 0

Exception :java.lang.ArithmeticException: / by zero

Zero is an valid denomiattor, please try again

Please enter an integer number : 7

Please enter an integer number : 3

a =7 b= 3 amd quotient =2

Pitfall: Catch the More Specific Exception First

• When catching multiple exceptions, the
order of the catch blocks is important

– When an exception is thrown in a try block, the
catch blocks are examined in order

– The first one that matches the type of the
exception thrown is the one that is executed

• When catching multiple exceptions, the
order of the catch blocks is important

– When an exception is thrown in a try block, the
catch blocks are examined in order

– The first one that matches the type of the
exception thrown is the one that is executed

The finally Block

try-catch-finally Control Flow

try-catch-finally Control Flow

• If the try-catch-finally blocks are inside a method
definition, there are three possibilities when the code is run:

1. The try block runs to the end, no exception is thrown, and the
finally block is executed

2. An exception is thrown in the try block, caught in one of the
catch blocks, and the finally block is executed

3. An exception is thrown in the try block, there is no matching
catch block in the method, the finally block is executed,
and then the method invocation ends and the exception object
is thrown to the enclosing method

• If the try-catch-finally blocks are inside a method
definition, there are three possibilities when the code is run:

1. The try block runs to the end, no exception is thrown, and the
finally block is executed

2. An exception is thrown in the try block, caught in one of the
catch blocks, and the finally block is executed

3. An exception is thrown in the try block, there is no matching
catch block in the method, the finally block is executed,
and then the method invocation ends and the exception object
is thrown to the enclosing method

Propagating Exceptions
Throwing an Exception in a Method

• Sometimes it makes sense to throw an exception in a method,
but not catch it in the same method

– Some programs that use a method should just end if an exception
is thrown, and other programs should do something else

– In such cases, the program using the method should enclose the
method invocation in a try block, and catch the exception in a
catch block that follows

• In this case, the method itself would not include try and catch blocks

– However, it would have to include a throws clause

• Sometimes it makes sense to throw an exception in a method,
but not catch it in the same method

– Some programs that use a method should just end if an exception
is thrown, and other programs should do something else

– In such cases, the program using the method should enclose the
method invocation in a try block, and catch the exception in a
catch block that follows

• In this case, the method itself would not include try and catch blocks

– However, it would have to include a throws clause

Declaring Exceptions in a throws Clause

• If a method can throw an exception but does not catch it, it
must provide a warning

– This warning is called a throws clause

– The process of including an exception class in a throws clause is
called declaring the exception

throws AnException //throws clause

– The following states that an invocation of aMethod could throw
AnException

public void aMethod() throws AnException

• If a method can throw an exception but does not catch it, it
must provide a warning

– This warning is called a throws clause

– The process of including an exception class in a throws clause is
called declaring the exception

throws AnException //throws clause

– The following states that an invocation of aMethod could throw
AnException

public void aMethod() throws AnException

Declaring Exceptions in a throws Clause

• If a method can throw more than one type of exception, then
separate the exception types by commas

public void aMethod() throws AnException,AnotherException

• If a method throws an exception and does not catch it, then
the method invocation ends immediately

• If a method can throw more than one type of exception, then
separate the exception types by commas

public void aMethod() throws AnException,AnotherException

• If a method throws an exception and does not catch it, then
the method invocation ends immediately

Method getDepend()
may throw a number
format exception when
converting a string to an
integer, but it does not
catch this exception.

The call to getDepend()
occurs in the try block of
method main(), so
main() handles the
exception in its catch
block.

If main() did not have a
catch block for number
format exceptions, the
exception would be
handled by the JVM.

Method getDepend()
may throw a number
format exception when
converting a string to an
integer, but it does not
catch this exception.

The call to getDepend()
occurs in the try block of
method main(), so
main() handles the
exception in its catch
block.

If main() did not have a
catch block for number
format exceptions, the
exception would be
handled by the JVM.

// postcondition: Returns int value of a numeric data string.
// Throws an exception if string is not numeric.
public static int getDepend() throws NumberFormatException {

String numStr = jnputnext();
return Integer.parseInt(numStr);

}

// postcondition: Calls getDepend() and handles its exceptions.
public static void main(String[] args) {
int children = 1; // problem input, default is 1
try {

children = getDepend();
}
catch (NumberFormatException ex) {

// Handle number format exception.
System.out.println("Invalid integer“ + ex);

}
}

// postcondition: Returns int value of a numeric data string.
// Throws an exception if string is not numeric.
public static int getDepend() throws NumberFormatException {

String numStr = jnputnext();
return Integer.parseInt(numStr);

}

// postcondition: Calls getDepend() and handles its exceptions.
public static void main(String[] args) {
int children = 1; // problem input, default is 1
try {

children = getDepend();
}
catch (NumberFormatException ex) {

// Handle number format exception.
System.out.println("Invalid integer“ + ex);

}
}

Exception propagation and throws clause

Exception Thrower

• When a method may throw an exception, either
directly or indirectly, we call the method an
exception thrower.

• Every exception thrower must be one of two types:

– catcher.

– propagator.

• When a method may throw an exception, either
directly or indirectly, we call the method an
exception thrower.

• Every exception thrower must be one of two types:

– catcher.

– propagator.

Types of Exception Throwers

• An exception catcher is an exception thrower that
includes a matching catch block for the thrown
exception.

• An exception propagator does not contain a
matching catch block.

• A method may be a catcher of one exception and
a propagator of another.

• An exception catcher is an exception thrower that
includes a matching catch block for the thrown
exception.

• An exception propagator does not contain a
matching catch block.

• A method may be a catcher of one exception and
a propagator of another.

Sample Call Sequence

Method A calls method B,
Method B calls method C,
Method C calls method D.

Method A calls method B,
Method B calls method C,
Method C calls method D.

Every time a method is executed, the
method’s name is placed on top of the stack.

Sample Call Sequence
When an exception is thrown, the system searches down the stack from
the top, looking for the first matching exception catcher.

Method D throws an exception, but no matching catch block exits in the
method, so method D is an exception propagator.

The system then checks method C. C is also an exception propagator.

Finally, the system locates the matching catch block in method B, and
therefore, method B is the catcher for the exception thrown by method D.

Method A also includes the matching catch block, but it will not be
executed because the thrown exception is already caught by method B and
method B does not propagate this exception.

When an exception is thrown, the system searches down the stack from
the top, looking for the first matching exception catcher.

Method D throws an exception, but no matching catch block exits in the
method, so method D is an exception propagator.

The system then checks method C. C is also an exception propagator.

Finally, the system locates the matching catch block in method B, and
therefore, method B is the catcher for the exception thrown by method D.

Method A also includes the matching catch block, but it will not be
executed because the thrown exception is already caught by method B and
method B does not propagate this exception.

void C() throws Exception {
….

}

void C() throws Exception {
….

}

void D() throws Exception {
….

}

void D() throws Exception {
….

}

Example

Throwing an exception is a much better
approach. Here’s the modified method that
throws an IlleglArgumentException when the
value of 0 is passed as an argument:

Throwing an exception is a much better
approach. Here’s the modified method that
throws an IlleglArgumentException when the
value of 0 is passed as an argument:

Consider the Fraction class. The
setDenominator method of the
Fraction class
was defined as follows:

Consider the Fraction class. The
setDenominator method of the
Fraction class
was defined as follows:

public void setDenominator (int d)
throws IlleglArgumentException

{
if (d = = 0)
{

throw new IlleglArgumentException (“Fatal Error”);

}
denominator = d;

}

public void setDenominator (int d)
throws IlleglArgumentException

{
if (d = = 0)
{

throw new IlleglArgumentException (“Fatal Error”);

}
denominator = d;

}

public void setDenominator (int d)
{

if (d = = 0)
{

System.out.println(“Fatal Error”);
System.exit(1);

}
denominator = d;

}

public void setDenominator (int d)
{

if (d = = 0)
{

System.out.println(“Fatal Error”);
System.exit(1);

}
denominator = d;

}

Programmer-Defined Exception Classes
• A throw statement can throw an exception object of any exception class
• Instead of using a predefined class, exception classes can be programmer-

defined
– These can be tailored to carry the precise kinds of information needed in

the catch block
– A different type of exception can be defined to identify each different

exceptional situation

• Every exception class to be defined must be a sub-class of some already
defined exception class
– It can be a sub-class of any exception class in the standard Java libraries,

or of any programmer defined exception class
• Constructors are the most important members to define in an exception class

– They must behave appropriately with respect to the variables and
methods inherited from the base class

– Often, there are no other members, except those inherited from the base
class

• The following exception class performs these basic tasks only

A Programmer-Defined Exception Class

Programmer-Defined Exception Class
Guidelines

• Exception classes may be programmer-defined, but every
such class must be a derived class of an already existing
exception class

• The class Exception can be used as the base class, unless
another class would be more suitable

• At least two constructors should be defined, sometimes more

• The exception class should allow for the fact that the method
getMessage is inherited

Programmer-Defined Exceptions: AgeInputException

class AgeInputException extends Exception

{

private static final String DEFAULT_MESSAGE = "Input out of bounds";

private int lowerBoun, upperBound, value;

public AgeInputException(int low, int high, int input)

{ this(DEFAULT_MESSAGE, low, high, input); }

public AgeInputException(String msg, int low, int high, int input)

{ super(msg);

if (low > high) throw new IllegalArgumentException();

lowerBound = low; upperBound = high; value = input;

}

public int lowerBound() { return lowerBound;}

public int upperBound() {return upperBound;}

public int value() { return value;}

}

import java.util.Scanner;
class AgeInputVer5 {

private static final String DEFAULT_MESSAGE = "Your age:";
private static final int DEFAULT_LOWER_BOUND = 0;
private static final int DEFAULT_UPPER_BOUND = 99;
private int lowerBound, upperBound;
public AgeInputVer5() throws IllegalArgumentException {

setBounds(DEFAULT_LOWER_BOUND, DEFAULT_UPPER_BOUND);
}
public AgeInputVer5(int low, int high) throws IllegalArgumentException
{

if (low > high)
{ throw new IllegalArgumentException("Low (" + low + ") was " +

"larger than high(" + high + ")");
} else setBounds(low, high);

}
public int getAge() throws AgeInputException

{
return getAge(DEFAULT_MESSAGE);
}

Class AgeInputVer5 Uses AgeInputException

public int getAge(String prompt) throws AgeInputException {
Scanner T = new Scanner(System.in);
String inputStr; int age;
while (true) {

inputStr = prompt;
try
{

age = Integer.parseInt(inputStr);
if (age < lowerBound || age > upperBound) {

throw new AgeInputException("Input out of bound ",
lowerBound, upperBound, age);

}
return age; //input okay so return the value & exit
} catch (NumberFormatException e) {

System.out.println("\n"+ inputStr + " is invalid age.");
System.out.print("Please enter age as an integer value : ");
prompt = T.next()+T.nextLine();

} } }
private void setBounds(int low, int high) { lowerBound = low; upperBound = high;
}}

Main Using throws
public class TestAgeInputUsingThrows {

public static void main(String[] args) throws AgeInputException {
int entrantAge=0;
AgeInputVer5 input = new AgeInputVer5(25, 50);
entrantAge = input.getAge("Thirty");
System.out.println("Input Okay "); } }

Thirty is invalid age.

Please enter age as an integer value : fourty

fourty is invalid age.

Please enter age as an integer value : 40

Input Okay

Thirty is invalid age.

Please enter age as an integer value : fourty

fourty is invalid age.

Please enter age as an integer value : 55

Exception in thread "main" AgeInputException: Input out of bound

at AgeInputVer5.getAge(AgeInputVersion5.java:42)

at TestAgeInputVer5.main(TestAgeInputVer5.java:7)

Main Using try-catch
public class Test2AgeInput {

public static void main(String[] args) {
int entrantAge;
try {

AgeInputVer5 input = new AgeInputVer5(25, 50);
entrantAge = input.getAge("Thirty");
System.out.println("Input Okay ");

}
catch (AgeInputException e) {
System.out.println("Error: " + e.value() + " is entered. It is " + "outside the valid range of [" +

e.lowerBound() +", " + e.upperBound() + "]"); } } }
Thirty is invalid age.

Please enter age as an integer value : fourty

fourty is invalid age.

Please enter age as an integer value : 40

Input Okay

Thirty is invalid age.

Please enter age as an integer value : fourty

fourty is invalid age.

Please enter age as an integer value : 55

Error: 55 is entered. It is outside the valid range of [25, 50]

