
Chapter 3

File Input/Output

Chapter 3

File Input/Output

King Saud University
College of Computer and Information Sciences

Department of Computer Science

Dr. S. HAMMAMI

Chapter 3: Objectives
• After you have read and studied this chapter, you should

be able to
– Include a JFileChooser object in your program to let the user

specify a file.

– Write bytes to a file and read them back from the file, using
FileOutputStream and FileInputStream.

– Write values of primitive data types to a file and read them back
from the file, using DataOutputStream and DataInputStream.

– Write text data to a file and read them back from the file, using
PrintWriter and BufferedReader

– Read a text file using Scanner

– Write objects to a file and read them back from the file, using
ObjectOutputStream and ObjectInputStream

Files

• Storage of data in variables and arrays is temporary—the
data is lost when a local variable goes out of scope or
when the program terminates.

• Computers use files for long-term retention of large
amounts of data, even after programs that create the data
terminate. We refer to data maintained in files as
persistent data, because the data exists beyond the
duration of program execution.

• Computers store files on secondary storage devices such
as magnetic disks, optical disks and magnetic tapes.

Files

There are two general types of files you need to learn about: text files
and binary files…

• A text, or character-based, file stores information using ASCII
character representations. Text files can be viewed with a standard
editor or word processing program but cannot be manipulated
arithmetically without requiring special conversion routines.

• A binary file stores numerical values using the internal numeric
binary format specified by the language in use. A Java program can
read a binary file to get numeric data, manipulate the data
arithmetically, and write the data to a binary file without any
intermediate conversions.

File Operations

There are three basic operations that you will need
to perform when working with disk files:

• Open the file for input or output.

• Process the file, by reading from or writing to
the file.

• Close the file.

Files and Streams

• Java views each files as a sequential stream of bytes
• Operating system provides mechanism to determine end of file

– End-of-file marker
– Count of total bytes in file
– Java program processing a stream of bytes receives an

indication from the operating system when program reaches
end of stream

Java’s view of a file of n bytes.

• File streams

– Byte-based streams – stores data in binary format

• Binary files – created from byte-based streams, read by a program that converts
data to human-readable format

– Character-based streams – stores data as a sequence of characters

• Text files – created from character-based streams, can be read by text editors

• Java opens file by creating an object and associating a stream with it

• Standard streams – each stream can be redirected

– System.in – standard input stream object, can be redirected with method setIn
– System.out – standard output stream object, can be redirected with method setOut
– System.err – standard error stream object, can be redirected with method setErr

Files and Streams

The Class File

• Class File useful for retrieving information
about files and directories from disk

• Objects of class File do not open files or
provide any file-processing capabilities

• File objects are used frequently with objects of
other java.io classes to specify files or
directories to manipulate.

Creating File Objects
• To operate on a file, we must first create a File object (from java.io).

Class File provides constructors:

1. Takes String specifying name and path (location of file on disk)

Opens the file sample.dat
in the current directory.

Opens the file sample.dat
in the current directory.File filename = new File(“sample.dat”);

F i l e f i l e n a m e = n e w F i l e (“ C : / S a m p l e P r o g r a m s / t e s t . d a t ”) ;

O pens the file test.datin the directory C :\S am pleP rogram s using the

generic file separator /and providing the full pathnam e.

Opens the file test.dat in the directory C:\SamplePrograms using the
generic file separator / and providing the full pathname.

2. Takes two Strings, first specifying path and second specifying name of file

File filename = new File(String pathToName, String Name);

File Methods

Method Description

String getAbsolutePath() Returns a string with the absolute path of the file or directory.

String getName() Returns a string with the name of the file or directory.

String getPath() Returns a string with the path of the file or directory.

String getParent() Returns a string with the parent directory of the file or directory (i.e.,
the directory in which the file or directory can be found).

long length() Returns the length of the file, in bytes. If the File object represents a
directory, 0 is returned.

long lastModified() Returns a platform-dependent representation of the time at which the
file or directory was last modified. The value returned is useful only for
comparison with other values returned by this method.

String[] list() Returns an array of strings representing the contents of a directory.
Returns null if the File object does not represent a directory.

Method Description

boolean canRead() Returns true if a file is readable by the current application; false
otherwise.

boolean canWrite() Returns true if a file is writable by the current application; false
otherwise.

boolean exists() Returns true if the name specified as the argument to the File
constructor is a file or directory in the specified path; false otherwise.

boolean isFile() Returns true if the name specified as the argument to the File
constructor is a file; false otherwise.

boolean isDirectory() Returns true if the name specified as the argument to the File
constructor is a directory; false otherwise.

boolean isAbsolute() Returns true if the arguments specified to the File constructor
indicate an absolute path to a file or directory; false otherwise.

Some File Methods

To see if filename is
associated to a real file
correctly.

To see if filename is
associated to a real file
correctly.

if (filename.exists()) {

To see if filename is
associated to a file or not.
If false, it is a directory.

To see if filename is
associated to a file or not.
If false, it is a directory.

if (filename.isFile()) {

File directory = new
File("C:/JavaPrograms/Ch4");

String Arrayfilename[] = directory.list();

for (int i = 0; i < Arrayfilename.length; i++)
{

System.out.println(Arrayfilename[i]);
}

List the name of all files
in the directory
C:\JavaProjects\Ch4

List the name of all files
in the directory
C:\JavaProjects\Ch4

 1

 2 // Demonstrating the File class.

 3 import java.io.File;

 4
 5 public class FileDemonstration

 6 {

 7 // display information about file user specifies

 8 public void analyzePath(String path)

 9 {

10 // create File object based on user input
11 File name = new File(path);
12
13 if (name.exists()) // if name exists, output information about it
14 {
15 // display file (or directory) information
16 System.out.printf(
17 "%s%s\n%s\n%s\n%s\n%s%s\n%s%s\n%s%s\n%s%s\n%s%s",
18 name.getName(), " exists",
19 (name.isFile() ? "is a file" : "is not a file"),
20 (name.isDirectory() ? "is a directory" :
21 "is not a directory"),
22 (name.isAbsolute() ? "is absolute path" :
23 "is not absolute path"), "Last modified: ",
24 name.lastModified(), "Length: ", name.length(),
25 "Path: ", name.getPath(), "Absolute path: ",
26 name.getAbsolutePath(), "Parent: ", name.getParent());
27

Create new File object; user
specifies file name and path

Returns true if file or directory
specified exists

Retrieve name of file or directory

Returns true if name is a
file, not a directory

Returns true if name is a
directory, not a file

Returns true if path was
an absolute path

Retrieve time file or directory
was last modified (system-

dependent value)
Retrieve path entered as a string

Retrieve length of file in bytes
Retrieve absolute path of file or

directory Retrieve parent directory (path
where File object’s file or

directory can be found)

Demonstrating Class File

28 if (name.isDirectory()) // output directory listing
29 {
30 String directory[] = name.list();
31 System.out.println("\n\nDirectory contents:\n");
32
33 for (String directoryName : directory)
34 System.out.printf("%s\n", directoryName);
35 } // end else
36 } // end outer if
37 else // not file or directory, output error message
38 {
39 System.out.printf("%s %s", path, "does not exist.");
40 } // end else
41 } // end method analyzePath
42 } // end class FileDemonstration

Returns true if File is a directory, not a file

Retrieve and display
contents of directory

 1
 2 // Testing the FileDemonstration class.

 3 import java.util.Scanner;

 4
 5 public class FileDemonstrationTest

 6 {

 7 public static void main(String args[])

 8 {

 9 Scanner input = new Scanner(System.in);

10 FileDemonstration application = new FileDemonstration();
11
12 System.out.print("Enter file or directory name here: ");
13 application.analyzePath(input.nextLine());
14 } // end main
15 } // end class FileDemonstrationTest

Enter file or directory name here: C:\Program Files\Java\jdk1.5.0\demo\jfc

jfc exists

is not a file

is a directory

is absolute path

Last modified: 1083938776645

Length: 0

Path: C:\Program Files\Java\jdk1.5.0\demo\jfc

Absolute path: C:\Program Files\Java\jdk1.5.0\demo\jfc

Parent: C:\Program Files\Java\jdk1.5.0\demo

Directory contents:

CodePointIM

FileChooserDemo

Font2DTest

Java2D

Metalworks

Notepad

SampleTree

Stylepad

SwingApplet

SwingSet2

TableExample

Enter file or directory name here:

C:\Program Files\Java\jdk1.5.0\demo\jfc\Java2D\readme.txt

readme.txt exists

is a file

is not a directory

is absolute path

Last modified: 1083938778347

Length: 7501

Path: C:\Program Files\Java\jdk1.5.0\demo\jfc\Java2D\readme.txt

Absolute path: C:\Program Files\Java\jdk1.5.0\demo\jfc\Java2D\readme.txt

Parent: C:\Program Files\Java\jdk1.5.0\demo\jfc\Java2D

Low-Level File I/O

• To read data from or write data to a file, we must create
one of the Java stream objects and attach it to the file.

• A stream is a sequence of data items (sequence of
characters or bytes) used for program input or output. Java
provides many different input and output stream classes in
the java.io API.

• A file stream is an object that enables the flow of data
between a program and some I/O device or file

Low-Level File I/O

– Java has two types of streams: an input
stream and an output stream.

– If the data flows into a program, then the
stream is called an input stream

– If the data flows out of a program, then the
stream is called an output stream

Streams for Low-Level File I/O
Binary File Stream Classes

FileInputStream To open a binary input stream and
connect it to a physical disk file

FileOutputStream To open a binary output stream and
connect it to a physical disk file

DataInputStream To read binary data from a stream

DataOutputStream To write binary data to a stream

A File Has Two Names

• Every input file and every output file used by a program
has two names:

1. The real file name used by the operating system

2. The name of the stream that is connected to the file

• The actual file name is used to connect to the stream

• The stream name serves as a temporary name for the
file, and is the name that is primarily used within the
program

Opening a File

A file stream provides a connection between your
program and the outside world. Opening a file
makes the connection between a logical program
object and a physical file via the file stream.

Logical File Object Physical Disk File

FileOutputStream
Data

FileInputStream
Data

Opening a Binary File for Output

Using the FileOutputStream class, create a file stream and connect it to a
physical disk file to open the file. We can output only a sequence of bytes.

Import java.io.*
Class TestFileOuputStream {
Public static void main (String [] args) throws IOException
{
//set up file and stream
File F = new File("sample1.data");

FileOutputStream OutF = new FileOutputStream(F);

//data to save
byte[] A = {10, 20, 30, 40,50, 60, 70, 80};

//write the whole byte array at once to the stream
OutF.write(A);

//output done, so close the stream
OutF.close();
}
}

To ensure that all data are saved to a
file, close the file at the end of the file
access.

To ensure that all data are saved to a
file, close the file at the end of the file
access.

Opening a Binary File for Input
Using the FileInputStream class, create a file stream and connect it to a
physical disk file to open the file.

Import java.io.*
Class TestFileInputStream {
Public static void main (String [] args) throws IOException
{
//set up file and stream
File G = new File("sample1.data");
FileInputStream InG = new FileInputStream(G);

//set up an array to read data in
int fileSize = (int)G.length();
byte[] B = new byte[fileSize];

//read data in and display them
InG.read(B);
for (int i = 0; i < fileSize; i++) {

System.out.println(B[i]);
}

//input done, so close the stream
InG.close();
}
}

Streams for High-Level File I/O

• FileOutputStream and DataOutputStream are
used to output primitive data values

• FileInputStream and DataInputStream are used to
input primitive data values

• To read the data back correctly, we must know the
order of the data stored and their data types

Setting up DataOutputStream

A standard sequence to set up a DataOutputStream object:

Sample Output

import java.io.*;
class TestDataOutputStream {
public static void main (String[] args) throws IOException {

//set up file and stream

File F = new File("sample3.data");

FileOutputStream OutF = new FileOutputStream(F);

DataOutputStream DF = new DataOutputStream(OutF);

//write values of primitive data types to the stream
DF.writeByte(12);
DF.writeInt(1234);
DF.writeLong(9876543);
DF.writeFloat(1234F);
DF.writeDouble(1234.4565345);
DF.writeChar('A');
DF.writeBoolean(false);

//output done, so close the stream
DF.close();

}
}

/*========= run============

inside the file "sample3.data" is:

� � Ò –´?Dš@ @“IÓ}Ç«ü A

************************/

Setting up DataInputStream

A standard sequence to set up a DataInputStream object:

Sample Input
import java.io.*;
class TestDataInputStream {

public static void main (String[] args) throws IOException {
//set up inDataStream

File G = new File("sample3.data");

FileInputStream InF = new FileInputStream(G);

DataInputStream DF = new DataInputStream(InF);

//read values back from the stream and display them
System.out.println(DF.readByte());
System.out.println(DF.readInt());
System.out.println(DF.readLong());
System.out.println(DF.readFloat());
System.out.println(DF.readDouble());
System.out.println(DF.readChar());
System.out.println(DF.readBoolean());

//input done, so close the stream
DF.close();

}
}

/*output after reading file sample3.dtat"
12
1234
9876543
1234.0
1234.4565345
A
true

Reading Data Back in Right Order

The order of write and read operations must match in order to read the stored
primitive data back correctly.

Textfile Input and Output

• Instead of storing primitive data values as binary data in a
file, we can convert and store them as a string data.

– This allows us to view the file content using any text editor

• To output data as a string to file, we use a PrintWriter
object.

• To input data from a textfile, we use FileReader and
BufferedReader classes

– From Java 5.0 (SDK 1.5), we can also use the Scanner class for
inputting textfiles

Text File Stream Classes

FileReader To open a character input stream and
connect it to a physical disk file

FileWriter To open a character output stream and
connect it to a physical disk file

BufferedReader To provide buffering and to read data
from an input stream

BufferedWriter To provide output buffering

PrintWriter To write character data to an output
stream

Sample Textfile Output
A test program to save data to a file using PrintWriter for high-level IO

import java.io.*;
class TestPrintWriter {

public static void main (String[] args) throws IOException {

//set up file and stream
File outFile = new File("sample3.data");
FileOutputStream SF = new FileOutputStream(outFile);
PrintWriter PF = new PrintWriter(SF);

//write values of primitive data types to the stream
PF.println(987654321);
PF.println("Hello, world.");
PF.println(true);

//output done, so close the stream
PF.close();

}
}

We use println and print
with PrintWriter. The print
and println methods convert

primitive data types to
strings before writing to a

file.

Sample Textfile Input

To read the data from a text file, we use the FileReader and
BufferedReadder objects.

To read back from a text file:
- we need to associate a BufferedReader object to a file,

File inF = new File("sample3.data");
FileReader FR = new FileReader(inF);
BufferedReader BFR = new BufferedReader(FR);

- read data using the readLine method of BufferedReader,

String str;
str = bufReader.readLine();

- convert the string to a primitive data type as necessary.
int i = Integer.parseInt(str);

Sample Textfile Input

//get double
str = BFR.readLine();
double d = Double.parseDouble(str);

//get char
str = BFR.readLine();
char c = str.charAt(0);

//get boolean
str = BFR.readLine();
Boolean boolObj = new Boolean(str);
boolean b = boolObj.booleanValue();

System.out.println(i);
System.out.println(l);
System.out.println(f);
System.out.println(d);
System.out.println(c);
System.out.println(b);

//input done, so close the stream
BFR.close();

}
}

import java.io.*;
class TestBufferedReader {

public static void main (String[] args) throws IOException
{

//set up file and stream
File inF = new File("sample3.data");
FileReader FR = new FileReader(inF);
BufferedReader BFR = new BufferedReader(FR);
String str;
//get integer
str = BFR.readLine();
int i = Integer.parseInt(str);

//get long
str = BFR.readLine();
long l = Long.parseLong(str);

//get float
str = BFR.readLine();
float f = Float.parseFloat(str);

Sample Textfile Input with Scanner
import java.util.*;
import java.io.*;
class TestScanner {

public static void main (String[] args) throws IOException {

//open the Scanner
try{

Scanner input = new Scanner(new File("sample3.data"));
} catch (FileNotFoundException e) {System.out.println(“Error opening file”);

System. Exit(1);}
int i = input.nextInt();
long l = input.nextLong();
float f = input.nextFloat();
double d = input.nextDouble();
char c = input.next().charAt(0);
boolean b = input.nextBoolean();

System.out.println(i);
System.out.println(l);
System.out.println(f);
System.out.println(d);
System.out.println(c);
System.out.println(b);

input.close();
}

}

The code is the same as
TestBufferedReader but uses the

Scanner class instead of BufferedReader.
Notice that the conversion is not

necessary with the Scanner class by using
appropriate input methods such as

nexInt and nexDouble.

We can associate a new Scanner object to a File object.
For example:

Scanner scanner = new File (“sample3.data”));

Will associate scanner to the file sample3.data. Once this
association is made, we can use scanner methods such as
nexInt, next, and others to input data from the file.

We can associate a new Scanner object to a File object.
For example:

Scanner scanner = new File (“sample3.data”));

Will associate scanner to the file sample3.data. Once this
association is made, we can use scanner methods such as
nexInt, next, and others to input data from the file.

Saving Objects

import java.io.*;
Class TestObjectOutputStream {
public static void main (String[] args) throws IOException {

File outFile = new File("objects.data");
FileOutputStream outFileStream = new FileOutputStream(outFile);
ObjectOutputStream outObjectStream = new ObjectOutputStream(outFileStream);
Person p;
for (int i =0; i<10; i++) {

s=input.next();
p = new Person ();
p.setName(input.next()+input.nextLine());
p.setAge(input.nextInt());
p.setGender(s.charAt(0));

outObjecttStream.writeObject(p);
}
outObjectStream.close();

}
}

To save objects to a file, we first create an ObjectOutputStream object. We use
the method writeObject to write an object.

Saving Objects
It is possible to save different type of objects to a single file. Assuming the Account and
Bank classes are defined properly, we can save both types of objects to a single file:

File outFile = new File("objects.data");

FileOutputStream outFileStream = new FileOutputStream(outFile);

ObjectOutputStream outObjectStream = new ObjectOutputStream(outFileStream);

File outFile = new File("objects.data");

FileOutputStream outFileStream = new FileOutputStream(outFile);

ObjectOutputStream outObjectStream = new ObjectOutputStream(outFileStream);

Person person = new Person("Mr. Ali", 20, 'M');

outObjectStream.writeObject(person);

account1 = new Account();
bank1 = new Bank();

outObjectStream.writeObject(account1);
outObjectStream.writeObject(bank1);

Could save objects
from the different
classes.

Could save objects
from the different
classes.

Saving Objects

We can even mix objects and primitive data type values, for example,

Account account1, account2;
Bank bank1, bank2;

account1 = new Account();
account2 = new Account();
bank1 = new Bank();
bank2 = new Bank();

outObjectStream.writeInt(15);

outObjectStream.writeObject(account1);

outObjectStream.writeChar(‘X’);

Reading Objects

To read objects from a file, we use FileInputStream and ObjectInputStream.
We use the method readObject to read an object.

import java.io.*;
Class TestObjectInputStream {
public static void main (String[] args) throws IOException {

File inFile = new File("objects.data");
FileInputStream inFileStream = new FileInputStream(inFile);
ObjectInputStream inObjectStream = new ObjectInputStream(inFileStream);
Person p;
for (int i =0; i<10; i++) {

p = (Person) inObjectStream.readObject();
System.out.println(p.getName() + “ “ + p.getAge() + “ “ +p.getGender());

}
inObjectStream.close();

}
}

Reading Objects

If a file contains objects from different classes, we must read them in the
correct order and apply the matching typecasting. For example, if the file
contains two Account and two Bank objects, then we must read them in the
correct order:

account1 = (Account) inObjectStream.readObject();

account2 = (Account) inObjectStream.readObject();

bank1 = (Bank) inObjectStream.readObject();

bank2 = (Bank) inObjectStream.readObject();

Saving and Loading Arrays

• Instead of processing array elements individually, it is
possible to save and load the whole array at once.

Person[] p = new Person[N];
//assume N already has a value

//build the people array
. . .
//save the array
outObjectStream.writeObject (p);

//read the array

Person[] p = (Person[]) inObjectStream.readObject();

Example: Class Department

Department

- name: String

+ Department(int size)
+ setDepartment()

+ openOutputFile(String)

+ openInputFile(String)

+ averageCredit():double
+ display()

Course

- name: String
- creditHours: int

+ Course(String, int)
+ display()
+ setName(String)
+ setCreditHs(int)
+ getCreditHours()

Example: Class Department
Implementation of Class Course

public void setName(String na)

{

name=na;

}

public void setCreditHs(int h)

{

creditHours=h;

}

public double getCreditHours()

{

return creditHours;

}

}

public void setName(String na)

{

name=na;

}

public void setCreditHs(int h)

{

creditHours=h;

}

public double getCreditHours()

{

return creditHours;

}

}

import java.io.*;

public class Course implements Serializable

{

private String name;

private int creditHours;

public Course (String na, int h)

{

name=na;

creditHours=h;

}

public void display()

{

System.out.println("Name : "+name);

System.out.println("Credit Hours : "+ creditHours);

}

import java.io.*;

public class Course implements Serializable

{

private String name;

private int creditHours;

public Course (String na, int h)

{

name=na;

creditHours=h;

}

public void display()

{

System.out.println("Name : "+name);

System.out.println("Credit Hours : "+ creditHours);

}

Example: Class Department
Implementation of Class Department

import java.io.*;

import java.util.Scanner;

public class Department

{

private String name;

private Course []c;

public Department(int size)

{

name= " ";

c= new Course[size];

}

import java.io.*;

import java.util.Scanner;

public class Department

{

private String name;

private Course []c;

public Department(int size)

{

name= " ";

c= new Course[size];

}

public void setDepartment()

{

Scanner input = new Scanner(System.in);

System.out.print("Please enter the name of Department :");

name =input.next()+input.nextLine();

for (int i=0; i<c.length; i++)

{

System.out.print("Please enter the name of the course :");

c[i]=new course();

c[i].setName(input.next()+ input.nextLine());

System.out.print("Please enter the credit hours : ");

c[i].setCreditHs(input.nextInt());

}

}

public void setDepartment()

{

Scanner input = new Scanner(System.in);

System.out.print("Please enter the name of Department :");

name =input.next()+input.nextLine();

for (int i=0; i<c.length; i++)

{

System.out.print("Please enter the name of the course :");

c[i]=new course();

c[i].setName(input.next()+ input.nextLine());

System.out.print("Please enter the credit hours : ");

c[i].setCreditHs(input.nextInt());

}

}

Example: Class Department
Implementation of Class Department

public void openOutputFile(String fileName) throws
IOException

{

File f = new File(fileName);

FileOutputStream g = new FileOutputStream(f);

ObjectOutputStream obj = new ObjectOutputStream(g);

obj.writeBytes(name);

obj.writeObject(c);

obj.close();

}

public void openOutputFile(String fileName) throws
IOException

{

File f = new File(fileName);

FileOutputStream g = new FileOutputStream(f);

ObjectOutputStream obj = new ObjectOutputStream(g);

obj.writeBytes(name);

obj.writeObject(c);

obj.close();

}

public void openInputFile(String fileName) throws

ClassNotFoundException, IOException

{

File f = new File(fileName);

FileInputStream g = new FileInputStream(f);

ObjectInputStream obj = new ObjectInputStream(g);

name=obj.readLine();

c = (Course [])obj.readObject();

obj.close();

}

public void openInputFile(String fileName) throws

ClassNotFoundException, IOException

{

File f = new File(fileName);

FileInputStream g = new FileInputStream(f);

ObjectInputStream obj = new ObjectInputStream(g);

name=obj.readLine();

c = (Course [])obj.readObject();

obj.close();

}

Example: Class Department
Implementation of Class Department

public double averageCredit()

{

double s=0.0;

for (int i=0; i<c.length; i++)

s+=c[i].getCreditHours();

return (s/c.length);

}

public void display()

{

System.out.println("========================");

System.out.println("The name of the department is :" + name);

for (int i=0; i<c.length; i++)

c[i].display();

System.out.println("The average of credit hours is :" + averageCredit());

}

}

public double averageCredit()

{

double s=0.0;

for (int i=0; i<c.length; i++)

s+=c[i].getCreditHours();

return (s/c.length);

}

public void display()

{

System.out.println("========================");

System.out.println("The name of the department is :" + name);

for (int i=0; i<c.length; i++)

c[i].display();

System.out.println("The average of credit hours is :" + averageCredit());

}

}

Implementation of DepartmentTest1

/* run

Please enter the name of Department :Computer science

Please enter the name of the course :csc107

Please enter the credit hours : 3

Please enter the name of the course :csc112

Please enter the credit hours : 3

Please enter the name of the course :csc113

Please enter the credit hours : 4

Please enter the name of Department :Engineering

Please enter the name of the course :eng123

Please enter the credit hours : 4

Please enter the name of the course :eng125

Please enter the credit hours : 3

*/

/* run

Please enter the name of Department :Computer science

Please enter the name of the course :csc107

Please enter the credit hours : 3

Please enter the name of the course :csc112

Please enter the credit hours : 3

Please enter the name of the course :csc113

Please enter the credit hours : 4

Please enter the name of Department :Engineering

Please enter the name of the course :eng123

Please enter the credit hours : 4

Please enter the name of the course :eng125

Please enter the credit hours : 3

*/

import java.io.*;

public class DepartmentTest1

{

public static void main(String[] args) throws IOException

{

Department dep = new Department(3);

dep.setDepartment();

dep.openOutputFile("computer.data");

Department dep2 = new Department(2);

dep2.setDepartment();

dep2.openOutputFile("engineering.data");

}

}

import java.io.*;

public class DepartmentTest1

{

public static void main(String[] args) throws IOException

{

Department dep = new Department(3);

dep.setDepartment();

dep.openOutputFile("computer.data");

Department dep2 = new Department(2);

dep2.setDepartment();

dep2.openOutputFile("engineering.data");

}

}

import java.io.*;

public class DepartmentTest2

{

public static void main(String[] args) throws

ClassNotFoundException, IOException

{

Department d1 = new Department(3);

d1.openInputFile("computer.data");

d1.display();

Department d2 = new Department(2);

d2.openInputFile("engineering.data");

d2.display();

}

}

import java.io.*;

public class DepartmentTest2

{

public static void main(String[] args) throws

ClassNotFoundException, IOException

{

Department d1 = new Department(3);

d1.openInputFile("computer.data");

d1.display();

Department d2 = new Department(2);

d2.openInputFile("engineering.data");

d2.display();

}

}

/*

======================================

The name of the department is :Computer science

Name : csc107

Credit Hours : 3

Name : csc112

Credit Hours : 3

Name : csc113

Credit Hours : 4

The average of credit hours is :3.3333333333333335

======================================

The name of the department is :Engineering

Name : eng123

Credit Hours : 4

Name : eng125

Credit Hours : 3

The average of credit hours is :3.5

*/

/*

======================================

The name of the department is :Computer science

Name : csc107

Credit Hours : 3

Name : csc112

Credit Hours : 3

Name : csc113

Credit Hours : 4

The average of credit hours is :3.3333333333333335

======================================

The name of the department is :Engineering

Name : eng123

Credit Hours : 4

Name : eng125

Credit Hours : 3

The average of credit hours is :3.5

*/

Implementation of DepartmentTest2

