20 Applications of Oxidation/Reduction Titrations 20A AUXILIARY OXIDIZING AND REDUCING REAGENTS 20A-1 Auxiliary Reducing Reagents

Table 20-1 Uses of the Walden Reductor and the Jones Reductor

Walden	Jones
$Ag(s) + Cl^{-} \rightarrow AgCl(s) + e^{-}$	$Zn(Hg)(s) \rightarrow Zn^{2+} + Hg + 2e^{-1}$
$Fe^{3+} + e^- \rightarrow Fe^{2+}$	$\mathrm{Fe}^{3+} + \mathrm{e}^{-} \rightarrow \mathrm{Fe}^{2+}$
$Cu^{2+} + e^- \rightarrow Cu^+$	$Cu^{2+} + 2e^- \rightarrow Cu(s)$
$H_2MoO_4 + 2H^+ + e^- \rightarrow MoO_2^+ + 2H_2O$	$H_2MoO_4 + 6H^+ + 3e^- \rightarrow Mo^{3+} + 4H_2O$
$UO_2^{2^+} + 4H^+ + 2e^- \rightarrow U^{4+} + 2H_2O$	$UO_2^{2^+} + 4H^+ + 2e^- \rightarrow U^{4+} + 2H_2O$
	$UO_2^{2^+} + 4H^+ + 3e^- \rightarrow U^{3^+} + 2H_2O$
$V(OH)_4^+ + 2H^+ + e^- \rightarrow VO^{2+} + 3H_2O$	$V(OH)_4^+ + 4H^+ + 3e^- \rightarrow V^{2+} + 4H_2O$
TiO^{2+} not reduced	$TiO^{2+} + 2H^+ + e^- \rightarrow Ti^{3+} + 4H_2O$
Cr ³⁺ not reduced	$Cr^{3+} + e^- \rightarrow Cr^{2+}$

20A-2 Auxiliary Oxidizing Reagents

Sodium Bismuthate: $Mn(II) \rightarrow MnO_4^-$

 $NaBiO_3(s) + 4H^+ + 2e^- \rightarrow BiO^+ + Na^+ + 2H_2O$

Ammonium Peroxydisulfate, ammonium persulfate, (NH₄)₂S₂O₈

in acidic soln: Cr(III) \rightarrow dichromate Ce(III) \rightarrow Ce(IV) Mn(II) \rightarrow permanganate S₂O₈²⁻ + 2e⁻ \rightarrow 2SO₄²⁻ E° = 2.01 V

The oxidations are catalyzed by traces of silver ion. The excess reagent is readily decomposed by a brief period of boiling:

 $S_2O_8^{2} + 2H_2O \rightarrow 4SO_4^2 + O_2 + 4H^+$

Sodium Peroxide and Hydrogen Peroxide $H_2O_2 + 2H^+ + 2e^- \rightarrow 2H_2O \qquad E^\circ = 1.78 \text{ V}$ boiling: $H_2O_2 \rightarrow 2H_2O + 2O_2(g)$

A Jones reductor.

20B APPLING STANDARD REDUCING AGENTS

20B-1 Iron (II) Solutions

iron(II) ammonium sulfate, Fe(NH₄)₂(SO₄)₂·6H₂O (Mohr's salt)

iron(II) ethylenediamine sulfate, FeC₂H₄(NH₃)₂(SO₄)₂·4H₂O (**Oesper's salt**)

Air-oxidation of iron (II) takes place rapidly in neutral solutions but is inhibited in the presence of acids, with the most stable preparations being about 0.5 M in H_2SO_4 .

oxidizing agents \leftarrow excess of standard Fe(II) \leftarrow standard soln of pot. dichromate or Ce(IV).

Application: organic peroxides, hydroxylamine, Cr(VI), Ce(IV), Mo(VI), nitrate, chlorate, perchlorate and numerous other oxidants.

20B-2 Sodium Thiosulfate

iodine \leftarrow thiosulfate $2S_2O_3^{2-} \rightarrow S_4O_6^{2-} + 2e^{-}$

excess KI

 \downarrow analyte/slightly acidic solution iodine \leftarrow standard solution of Na₂S₂O₃

ex: determination of sod. Hypochlorite in bleaches

 $\begin{array}{l} Ocl^{-} + 2I^{-} + 2H^{+} \rightarrow Cl^{-} + I_{2} + H_{2}O \\ (unmeasured excess KI) \\ I_{2} + 2S_{2}O_{3}^{2^{-}} \rightarrow 2I^{-} + S_{4}O_{6}^{2^{-}} \end{array}$

Detecting End Points in Iodine/Thiosulfate Titrations

1. disappearance of the iodine color

 $5 \times 10^{-6} \text{ M I}_2$ --- discernible color

2. starch indicator -- deep blue color

Starch undergoes decomposition in solution with high I_2 concentration. In titration of excess I_2 with $Na_2S_2O_3$, addition of the indicator must be deferred until most of the I_2 has been reduced.

Fig. 20-2 Thousands of glucose molecules polymerize to form huge molecules of β -amylose as shown in (a). Molecules of β -amylose tend to assume a helical structure. The iodine species I₃ as shown in (b) is incorporated into the amylose helix.

The Stability of Sodium Thiosulfate Solutions

decompose: $S_2O_3^{2-} + H^+ \rightarrow HSO_3^- + S(s)$

pH, microorganisms, concentration of the solution, presence of Cu(II) ion and exposure to sunlight.

Standardizing Thiosulfate Solutions

primary standard: pot. iodate/excess KI (pot. dichromate, pot. bromate, pot. hydrogen iodate, pot. ferricyanide and metallic copper)/ excess KI.

$$IO_{3}^{-} + 5I^{-} + 6H^{+} \rightarrow 3I_{2} + 2H_{2}O$$

$$\uparrow \qquad 1 \text{ mol } IO_{3}^{-} = 3 \text{ mol } I_{2} = 6 \text{ mol } S_{2}O_{3}^{2-}$$
thiosulfate

Ex. 20-1 A solution of Sod. thiosulfate was standardized by dissolving 0.1210 g KIO₃ (214.00 g/mol) in water, adding a large excess of KI, and acidifying with HCl. The liberated I₂ required 41.64 mL of the thiosulfate soln to decolorize the blue starch/iodine complex. Calculate the molarity of the Na₂S₂O₃.

amount Na₂S₂O₃ = 0.1210g KIO₃ × $\frac{1 \text{ mol}}{0.21400 \text{ g}}$ × 6 = 3.3925 mmol C_{Na₂S₂O₃ = $\frac{3.3925 \text{ mmol}}{41.64 \text{ mL}}$ = 0.08147 M or $\frac{\frac{121 \text{ mg}}{214 \text{ mg/mmol}}$ × 3 × 2 41.64 mL = 0.08147 M}

Tab 20-2 Application	ons of Sodium	Thiosulfate as	Reductant
----------------------	---------------	----------------	-----------

Analyte	Half-Reaction	Special Condition
IO ₄	$IO_4^- + 8H^+ + 7e^- \rightarrow \frac{1}{2}I_2 + 4H_2O$	Acid solution
	$IO_4^- + 2H^+ + 2e^- \rightarrow IO_3^- + H_2O$	Neutral solution
IO ₃ ⁻	$IO_3^- + 6H^+ + 5e^- \rightarrow \frac{1}{2}I_2 + 3H_2O$	Strong acid
BrO ₃ ⁻ , ClO ₃ ⁻	$XO_3^- + 6H^+ + 6e^- \rightarrow X^- + 3H_2O$	Strong acid
Br_2, Cl_2	$X_2 + 2I^- \rightarrow I_2 + 2X^-$	
NO_2^-	$HNO_2 + H^+ + e^- \rightarrow NO(g) + H_2O$	
Cu ²⁺	$Cu^{2+} + I + e^{-} \rightarrow CuI(s)$	
O_2	$O_2 + 4Mn(OH)_2(s) + 2H_2O \rightarrow 4Mn(OH)_3(s)$	Basic solution
	$Mn(OH)_3(s) + 3H^+ + e^- \rightarrow Mn^{2+} + 3H_2O$	Acidic solution
O ₃	$O_3(g) + 2H^+ + 2e^- \rightarrow O_2(g) + H_2O$	
Organic pero	$ROOH + 2H^{+} + 2e^{-} \rightarrow ROH + H_2O$	

20C APPLYING STANDARD OXIDING AGENTS

Table 20 5 Some common oxidants used as standard solutions						
Reagent and	Reduction	Stan	dard	Standardized	Indicator*	Stability#
ronnula	product	TOUCH	.1a1, v	witti		
KMnO ₄	Mn^{2+}	1.51†	Na_2	C_2O_4 , Fe, As_2O_3	MnO_4	(b)
KBrO ₃	Br⁻	1.44†		KBrO ₃	(1)	(a)
Ce(IV), Ce ⁴⁺	Ce ³⁺	1.44†	Na ₂ O	C_2O_4 , Fe, As_2O_3	(2)	(a)
$K_2Cr_2O_7$	Cr^{3+}	1.33†]	$K_2Cr_2O_7$, Fe	(3)	(a)
I ₂	I	0.536†	BaS_2	$O_3 \cdot H_2 O$, $Na_2 S_2 O_3$	starch	(c)

Table 20-3 Some common oxidants used as standard solutions

* (1) α-Naphthoflavone; (2) 1,10-phenanthroline iron(II) complex (ferroin); (3) diphenylamine sulfonic acid.

(a) Indefinitely stable;

- (b) moderately stable, requires periodic standardization;
- (c) somewhat unstable, require frequent standardization.

† E^o' in H₂SO₄.

20C-1 The Strong Oxidants-Potassium Permanganate and Cerium(IV)

 $\begin{array}{ll} MnO_4^- + 8H^+ + 5e^- \rightarrow & Mn^{2+} + 4H_2O & E^o = 1.51 \ V \ (in \geq 0.1 \ M \ strong \ acid) \\ Ce^{4+} + e^- \rightarrow & Ce^{3+} & E^{o*} = 1.44 \ V \ (1M \ H_2SO_4) = 1.70 \ V \ (1M \ HClO_4) = 1.61 \ V \\ & (1M \ HNO_3) \end{array}$

	Ce ⁴⁺	MnO ₄
in sulfuric acid	stable	decompose slowly
	not oxidize Cl ⁻	oxidize Cl ⁻
HCl soln of analyte	can be used	cannot be used
primary-standard-grade salt	available	
self-indicator	no	color of MnO ₄ ⁻
cost (1L 0.02 M soln)	\$ 2.20 (4.40)	\$ 0.08
in < 0.1 M strong acid	tendency to form ppt	

Comparison of the Two Reagents

Detecting the End Points

indicators: KMnO₄ solution -- intense purple color

diphenylamine sulfonic acid

1, 10-phenanthroline complex of Fe(II)

$2MnO_4^- + 3Mn^{2+} + H_2O \rightarrow 5MnO_2(s) + 4H^+$

 $\mathbf{K} = \mathbf{10}^{47} \rightarrow equilibrium [\mathbf{MnO_4}]$

rate: slow \rightarrow end point fades only gradually over 30s.

in Ce(IV) titration:

indicator: Fe(II) complex of 1,10-phenanthroline or one of its substitute derivatives (Table 20-3)

 $\begin{array}{rcl} C_{12}H_8N_2+Fe^{2+} & \rightarrow & Fe(C_{12}H_8N_2)_3{}^{2+} \rightarrow Fe(C_{12}H_8N_2)_3{}^{3+}+e^{-}\\ & & Ferrous \ complex & Ferric \ complex\\ & (Ferroin) \ red & (Ferriin) \ weak \ blue\end{array}$

The Preparation and Stability of Standard Solutions

KMnO₄ soln: not entirely stable

 $4MnO_4 + 2H_2O \rightarrow 4MnO_2(s) + 3O_2(g) + 4OH^-$

decomposition reaction is slow -- catalyzed by **light**, heat, acids, bases, Mn(II) and MnO₂.

Ex. 20-2 Described how you would prepare 2.0 L of an approximately 0.010 M soln of KMnO₄ (158.03 g/mol).

 $KMnO_4$ needed = 2.0 L× 0.010 M × 158.03 g/mol = 3.16 g

Dissolve about 3.2 g of KMnO₄ in a little water. After solution is complete add water to bring the volume to about 2.0 L. Heat the solution to boiling for a brief period, and let stand until it is cool. Filter through a glass-filtering crucible and stored in a clean <u>dark</u> bottle.

Thay really estimate entrance (1) compounds			
Name	Formula	Molar Mass	
Cerium(IV) ammonium nitrate	Ce(NO ₃) ₄ ·2NH ₄ NO ₃	548.2	
Cerium(IV) ammonium sulfate	$Ce(SO_4)_2 \cdot 2(NH_4)_2 SO_4 \cdot 2H_2O$	632.6	
Cerium(IV) hydroxide	Ce(OH) ₄	208.1	
Cerium(IV) hydrogen sulfate	Ce(HSO ₄) ₄	528.4	

Analytically Useful Cerium(IV) Compounds

Primary Standards

Sodium Oxalate.

 $2MnO_4^- + 5H_2C_2O_4 + 6H^+ \rightarrow 2Mn^{2+} + 10CO_2(g) + 8H_2O$

Mn(II) as a catalyst (autocatalysis)

 $2Ce^{4+} + H_2C_2O_4 \implies 2Ce^{3+} + 2H^+ + 2CO_2$

Ex. 20-3 You wish to standardize the soln in Ex.20-2 against pure $Na_2C_2O_4$ (134.00 g/mol). If you want to use between 30 and 45 mL of the reagent for the standardization, what range of masses of the primary standard should you weigh out?

for a 30-mL titration:

amount $KMnO_4 = 30 \text{ mL} \times 0.010 \text{ M} = 0.30 \text{ mmol}$

mass $Na_2C_2O_4 = 0.30 \text{ mmol} \times 5/2 \times 0.134 = 0.101 \text{ g}$

for a 45-mL titration:

mass $Na_2C_2O_4 = 45 \times 0.010 \times 5/2 \times 0.134 = 0.151$ g

Ex. 20-4 A 0.1278-g sample of primary-standard Na₂C₂O₄ required exactly 33.31 mL of the KMnO₄ solution in Ex. 20-2 to reach the end point. What was the molarity of the KMnO₄ reagent?

amount $Na_2C_2O_4 = 0.1278 \text{ g} \times 1 \text{ mmol}/0.134 \text{ g} = 0.95373 \text{ mmol}$

 $C_{KMnO_4} = 0.95373 \text{ mmol} \times (2/5) \times (1/33.31 = 0.01145 \text{ M})$

Using Potassium Permanganate and Cerium(IV) Solutions: Table 20-5

Ex. 20-5 Aqueous solution containing approximately 3% (w/w) H₂O₂ are sold in drug stores as a disinfectant. propose a method for determining the peroxide content of such a preparation using the standard soln described in Exs.20-3 and 4. Assume that you wish to use between 35 and 45 mL of the reagent for a titration.

 $5H_2O_2 + 2MnO_4^- + 6H^+ \rightarrow 5O_2 + 2Mn^{2+} + 8H_2O_4^-$

35 - 45 mL reagent:

amount $KMnO_4 = (35 \sim 45) mL \times 0.01145 M = 0.401 \sim 0.515 mmol$

amount $H_2O_2 = (0.401 \sim 0.515) \text{ mmol} \times (5/2) = 1.00 \sim 1.29 \text{ mmol}$

mass sample = $(1.00 \sim 1.29) \times 0.03401 \times (100/3) = 1.1 \sim 1.5 \text{ g}$

Thus we could weigh out from 1.1 to 1.5 g samples. These should be diluted to perhaps 75 to 100 mL with water and made slightly acidic with dilute H_2SO_4 before titration.

20C-2 Potassium Dichromate

 $Cr_2O_7^{2-} + 14H^+ + 6e^- \rightarrow 2Cr^{3+} + 7H_2O \qquad E^\circ = 1.33 V$ orange green in 1 M HCl or H₂SO₄ $E^{\circ \prime} = 1.0 \sim 1.1 V$

Advantages: stable, can be boiled without decomposition and do not react with HCl, primary-standard reagent is available and at a modest cost.

Disadvantage: lower electrode potential and the slowness reaction.

Preparing Dichromate Solutions

reagent-grade $K_2Cr_2O_7$ dried at 150°C to 200°C before being weighed

indicator: diphenylamine sulfonic acid,

violet (oxidized) \rightarrow colorless (reduced)

Applying Potassium Dichromate Solutions

- 1. titration of Fe(II): in moderate conc. of HCl $Cr_2O_7^{2-} + 6Fe^{2+} + 14H^+ \rightarrow 2Cr^{3+} + 6Fe^{3+} + 7H_2O$
- 2. indirect determination of oxidizing agents (nitrate, chlorate, permanganate, dichromate and organic peroxides):

analyte/acidic solution + measured excess Fe(II) \rightarrow

back-titrated excess Fe(II)

Ex. 20-6 A 5.00-mL sample of brandy was diluted to 1.000 L in a volumetric flask. The ethanol(C_2H_5OH) in a 25.00-mL aliquot of the diluted soln was distilled into 50.00 mL of 0.02000 M K₂Cr₂O₇, and oxidized to acidic acid with heating.

 $3C_2H_5OH + 2Cr_2O_7^{2-} + 16H^+ \rightarrow 4Cr^{3+} + 3CH_3COOH + 11H_2O$

After cooling, 20.00 mL of 0.1253 M Fe²⁺ were pipetted into the flask. The excess Fe²⁺ was then titrated with 7.46 mL of the standard $K_2Cr_2O_7$ to a diphenylamine sulfonic acid end point. Calculate the percent (w/v) C₂H₅OH (46.07 g/mol) in the brandy.

amount $K_2Cr_2O_7 = (50.00 + 7.46) \text{ mL} \times 0.02000 = 1.1492 \text{ mmol}$ $K_2Cr_2O_7$ consumed by $Fe^{2+} = 20.00 \times 0.1253 \times 1/6 = 0.41767 \text{ mmol}$ $K_2Cr_2O_7$ consumed by $C_2H_5OH = 1.1492 - 0.41767 = 0.73153 \text{ mmol}$ mass $C_2H_5OH = 0.73153 \times (3/2) \times 0.04607 = 0.050552 \text{ g}$ percent $C_2H_5OH = 0.050552/(5.00 \times 25.00/1000) \times 100 \% = 40.44 \%$

20C-3 Iodine

weak oxidizing agents: determination of strong reductants

 $I_3 + 2e^- \rightarrow 3I^ E^\circ = 0.536 \text{ V}$

advantages: selectivity, sensitive and reversible indicator disadvantage: lack stability

Properties of Iodine Solutions

 $I_2(s) + \Gamma \rightarrow I_3$ $K = 7.1 \times 10^2$

lack stability: volatility of iodine, slowly attacks most organic materials, airoxidation of iodide ion (\uparrow conc.). $4I^{-} + O_2(g) + 4H^{+} \rightarrow 2I_2 + 2H_2O$

Standardizing and Appling Iodine Solutions

Standardization: anhydrous Na thiosulfate or Ba thiosulfate

Iodimetry: (direct method)

 $I_2 \rightarrow reducing agents$ (ex: thiosulfate or arsenites)

Iodometry: (indirect method)

oxidizing agents + excess KI \rightarrow I₂ \leftarrow thiosulfate

Indicator:

1. Starch indicator solution

 $I_2 + I^- \rightarrow I_3^- + starch \rightarrow I_3^- - starch complex (blue-purple)$

2. CCl₄, HCCl₃, CS₂

 I_2 in CCl₄, HCCl₃, CS₂ \rightarrow violet color

Preparation of 0.1 N Iodine solution12.7 g I₂ + 40 g KI/20 mL H₂O \rightarrow adding H₂O to 1 LStandardization- Primary standard: Arsenic (III) oxide, As₂O₃As₂O₃ + 6NaOH \rightarrow 2Na₃AsO₃ + 3H₂ONa₃AsO₃ + 6NaOH \rightarrow 2Na₃AsO₃ + 3H₂ONa₃AsO₃ + 3HCl \rightarrow H₃AsO₃ + 3NaClH₃AsO₃ + H₂O + I₂ \rightarrow H₃AsO₄ + 2HIpH \downarrow : H₃AsO₃ + H₂O + I₂ \leftarrow H₃AsO₄ + 2H⁺ + 2I⁻pH \uparrow : I₂ + 2OH⁻ \rightarrow IO⁻ + I⁻ + H₂O3IO⁻ \rightarrow IO₃⁻ + 2I⁻strong oxidizing agent滴定 中 加入 NaHCO₃ [pH: 7~8]Na₃AsO₃ + I₂ + 2NaHCO₃ \rightarrow Na₃AsO₄ + 2NaI + 2CO₂ \uparrow + H₂O

Calculation: N of Iodine =
$$\frac{\frac{\text{mg As}_2\text{O}_3}{197.8/4}}{\text{mL Iodine}}$$

(1) Direct Iodimetric Titration

a.
$$H_3AsO_3 + H_2O + I_2 \rightarrow H_3AsO_4 + 2H^+ + 2I^-$$

b. Assay of Ascorbic Acid (Vit C)

(α -diketone)

(enediol)

(2) Residual Titration $(I_2 - Na_2S_2O_3)$

$$\begin{split} &NaHSO_3 + I_2 + H_2O \implies NaHSO_4 + 2HI \\ &I_2 + 2 \; Na_2S_2O_3 \implies 2NaI + Na_2S_4O_6 \end{split}$$

(3) Iodometry:

Sar	nple +	KI	(excess)	\rightarrow	I2 ← Na	a2S2O3
			\rightarrow			

$$(+2) \qquad (1e^{-}) \qquad (+1)$$

a. CuSO₄ + 4KI \rightarrow 2CuI \downarrow + I₂ + 2K₂SO₄
I₂+ 2Na₂S₂O₃ \rightarrow 2NaI + Na₂S₄O₆

b. Assay of sodium hypochlorite solution (NaOCl) NaOCl + H⁺ \rightarrow HOCl (+1) (2e⁻) (-1) HOCl + 2KI + HOAc \rightarrow I₂ + KCl + KOAc + H₂O I₂+ 2Na₂S₂O₃ \rightarrow 2NaI + Na₂S₄O₆

Table 20-6 Some Applications of Iodine Solutions

Analyte	Half-Reaction
As	$H_3ASO_3 + H_2O \rightarrow H_3AsO_4 + 2H^+ + 2e^-$
Sb	$H_3SbO_3 + H_2O \rightarrow H_3SbO_4 + 2H^+ + 2e^-$
Sn	$\mathrm{Sn}^{2+} \rightarrow \mathrm{Sn}^{4+} + 2\mathrm{e}^{-}$
H_2S	$H_2S \rightarrow S(s) + 2H^+ + 2e^-$
SO_2	$\mathrm{SO}_3^{2-} + \mathrm{H}_2\mathrm{O} \rightarrow \mathrm{SO}_4^{2-} + 2\mathrm{H}^+ + 2\mathrm{e}^-$
$S_2O_3^{2-}$	$2 S_2 O_3^{2-} \rightarrow S_4 O_6^{2-} + 2e^{-}$
N_2H_4	$N_2H_4 \rightarrow N_2(g) + 4H^+ + 4e^-$
Ascorbic acid	$C_6H_8O_6 \rightarrow C_6H_6O_6 + 2H^+ + 2e^-$

** Dichloroindophenol Titration

--Determination of Ascorbic acid Preparation

Blue in basic sol'ncolorlessPink in acid sol'nEnd point: pink (self-indicator)Vit C tituation in metanhagiharia acid and ac

Vit C titration in metaphosphoric acid and acetic acid sol'n

20C-4 Potassium Bromate as a Source of Bromine

Primary-standard KBrO₃ is available, stable standard 0.1 N Bromine sol'n (Koppeschaar's sol'n): (3 g KBrO₃ + 15 g KBr)/1 L H₂O Assay of sample: aniline, phenol, salicylic acid, resorcinol etc.

```
BrO_{3}^{-} + 5Br^{-} + 6H^{+} \rightarrow 3Br_{2} + 3H_{2}O
standard soln excess
\boxed{1 \text{ mol KBrO}_{3} = 3 \text{ mol Br}_{2}}
2I^{-} + Br_{2} \rightarrow I_{2} + 2Br^{-} \qquad (\text{excess KI})
I_{2} + 2S_{2}O_{3}^{2^{-}} \rightarrow S_{4}O_{6}^{2^{-}} + 2I^{-}
```


Substitution Reactions

halogen substitution: replacement of H in an aromatic ring by a halogen. determination of aromatic compound that contain strong ortho-para-directing groups, particularly amines and phenols.

Ex: 1. Determination of 8-hydroxyquinoline

2. Determination of aluminum

$$Al^{3+} + 3HOC_9H_6N \xrightarrow{pH4-9} Al(OC_9H_6N)_3(S) + 3H^+$$
$$Al(OC_9H_6N)_3(S) \xrightarrow{hot 4M HCl} 3HOC_9H_6N + Al^{3+}$$
$$3HOC_9H_6N + 6Br_2 \rightarrow 3HOC_9H_4NBr_2 + 6HBr$$

Ex. 20-7 A 0.2891-g sample of an antibiotic powder containing sulfanilamide was dissolved in HCl and the solution diluted to 100.0 mL. A 20.00-mL aliquot was transferred to a stoppered flask and 25.00 mL of 0.01767 M KBrO₃ added. About 10 g of KBr was added to form Br₂, which brominated the sulfanilamide in the sample. After 10 min, an excess of KI was added and the liberated iodine titrated with 12.92 mL of 0.1215 M sodium thiosulfate. The reaction are

$$\begin{array}{rcl} Br_2 &+& 2I^{\scriptscriptstyle -} \rightarrow & 2Br^{\scriptscriptstyle -} + & I_2 & (excess KI) \\ I_2 &+& 2S_2O_3^{2^{\scriptscriptstyle -}} \rightarrow & S_4O_6^{2^{\scriptscriptstyle -}} &+& 2I^{\scriptscriptstyle -} \end{array}$$

Calculate the % $NH_2C_6H_4SO_2NH_2$ (172.21 g/mol) in the powder.

total amount $Br_2 = 25.00 \text{ mL} \times 0.01767 \text{ M} \times 3 = 1.32525 \text{ mmol}$ amount excess $Br_2 = \text{amount } I_2 = 12.92 \text{ mL} \times 0.1215 \text{ M} \times (1/2) = 0.78489 \text{ mmol}$ The amount of Br_2 consumed by the sample = 1.32525 - 0.78489 = 0.54036 mmol

mass analyte = $0.54036 \times (1/2) \times 0.17221 = 0.046528$ g

$$\begin{cases} \text{(0.01767} \times 3 \times 2 \times 25 - 0.1215 \times 12.92) \times \frac{172.21}{4} \times 5 \\ \hline 289.1 \end{cases}$$

Addition Reactions

or

$$H-C=C-H+Br_{2} \longrightarrow H-C-C-H$$

20C-5 Determining Water with the Karl Fischer Reagent

Karl Fischer Reagent: I_2 , SO₂, organic base such as pyridine (C₅H₅N) or imidazole /CH₃OH or low-molecular-mass alcohol

In aprotic solvent: $I_2 + SO_2 + 2H_2O \rightarrow 2HI + H_2SO_4 = 2 \mod H_2O \rightarrow 1 \mod I_2$

Classical chemistry: use anhydrous methanol as solvent, and excess pyridine

 $\begin{array}{l} C_5H_5N\cdot I_2+C_5H_5N\cdot SO_2+C_5H_5N+H_2O\rightarrow 2C_5H_5N\cdot HI+C_5H_5N\cdot SO_3\\ C_5H_5N^+\cdot SO_3^-+CH_3OH\rightarrow C_5H_5N(H)SO_4CH_3\\ 1\ mol\ H_2O\rightarrow 1\ mol\ I_2,\ 1\ mol\ SO_2,\ 3\ mol\ C_5H_5N\end{array}$

Pyridine-free chemistry

Replaced by other amines: imidazole

(1) Solvolysis: $2ROH + SO_2 \rightarrow RSO_3^- + ROH_2^+$

(2) Buffering: $B + RSO_3^- + ROH_2^+ \rightarrow BH^+SO_3R^- + ROH$

(3) Redox:
$$B \cdot I_2 + BH^+ SO_3 R^- + B + H_2 O \rightarrow BH^+ SO_4 R^- + 2BH^+ I^-$$

 $1 \text{ mol } H_2O \rightarrow 1 \text{ mol } I_2$

Interfering reactions