20 Applications of Oxidation/Reduction Titrations

20A AUXILIARY OXIDIZING AND REDUCING REAGENTS

20A-1 Auxiliary Reducing Reagents

Table 20-1 Uses of the Walden Reductor and the Jones Reductor

Walden	Jones
$\mathrm{Ag}(\mathrm{s})+\mathrm{Cl}^{-} \rightarrow \mathrm{AgCl}(\mathrm{s})+\mathrm{e}^{-}$	$\mathrm{Zn}(\mathrm{Hg})(\mathrm{s}) \rightarrow \mathrm{Zn}^{2+}+\mathrm{Hg}+2 \mathrm{e}^{-}$
$\mathrm{Fe}^{3+}+\mathrm{e}^{-} \rightarrow \mathrm{Fe}^{2+}$	$\mathrm{Fe}^{3+}+\mathrm{e}^{-} \rightarrow \mathrm{Fe}^{2+}$
$\mathrm{Cu}^{2+}+\mathrm{e}^{-} \rightarrow \mathrm{Cu}^{+}$	$\mathrm{Cu}^{2+}+2 \mathrm{e}^{-} \rightarrow \mathrm{Cu}(\mathrm{s})$
$\mathrm{H}_{2} \mathrm{MoO}_{4}+2 \mathrm{H}^{+}+\mathrm{e}^{-} \rightarrow \mathrm{MoO}_{2}^{+}+2 \mathrm{H}_{2} \mathrm{O}$	$\mathrm{H}_{2} \mathrm{MoO}_{4}+6 \mathrm{H}^{+}+3 \mathrm{e}^{-} \rightarrow \mathrm{Mo}^{3+}+4 \mathrm{H}_{2} \mathrm{O}$
$\mathrm{UO}_{2}{ }^{2+}+4 \mathrm{H}^{+}+2 \mathrm{e}^{-} \rightarrow \mathrm{U}^{4+}+2 \mathrm{H}_{2} \mathrm{O}$	$\begin{aligned} & \mathrm{UO}_{2}^{2+}+4 \mathrm{H}^{+}+2 \mathrm{e}^{-} \rightarrow \mathrm{U}^{4+}+2 \mathrm{H}_{2} \mathrm{O} \\ & \mathrm{UO}_{2}{ }^{2+}+4 \mathrm{H}^{+}+3 \mathrm{e}^{-} \rightarrow \mathrm{U}^{3+}+2 \mathrm{H}_{2} \mathrm{O} \end{aligned}$
$\mathrm{V}(\mathrm{OH})_{4}^{+}+2 \mathrm{H}^{+}+\mathrm{e}^{-} \rightarrow \mathrm{VO}^{2+}+3 \mathrm{H}_{2} \mathrm{O}$	$\mathrm{V}(\mathrm{OH})_{4}^{+}+4 \mathrm{H}^{+}+3 \mathrm{e}^{-} \rightarrow \mathrm{V}^{2+}+4 \mathrm{H}_{2} \mathrm{O}$
TiO^{2+} not reduced	$\mathrm{TiO}^{2+}+2 \mathrm{H}^{+}+\mathrm{e}^{-} \rightarrow \mathrm{Ti}^{3+}+4 \mathrm{H}_{2} \mathrm{O}$
Cr^{3+} not reduced	$\mathrm{Cr}^{3+}+\mathrm{e}^{-} \rightarrow \mathrm{Cr}^{2+}$

20A-2 Auxiliary Oxidizing Reagents

Sodium Bismuthate: $\quad \mathrm{Mn}(\mathrm{II}) \rightarrow \mathrm{MnO}_{4}^{-}$

$$
\mathrm{NaBiO}_{3}(\mathrm{~s})+4 \mathrm{H}^{+}+2 \mathrm{e}^{-} \rightarrow \mathrm{BiO}^{+}+\mathrm{Na}^{+}+2 \mathrm{H}_{2} \mathrm{O}
$$

Ammonium Peroxydisulfate, ammonium persulfate, $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{~S}_{2} \mathrm{O}_{8}$
in acidic soln: $\mathrm{Cr}(\mathrm{III}) \rightarrow$ dichromate
$\mathrm{Ce}(\mathrm{III}) \rightarrow \mathrm{Ce}(\mathrm{IV})$
$\mathrm{Mn}(\mathrm{II}) \rightarrow$ permanganate
$\mathrm{S}_{2} \mathrm{O}_{8}{ }^{2-}+2 \mathrm{e}^{-} \rightarrow 2 \mathrm{SO}_{4}{ }^{2-} \quad \mathrm{E}^{0}=2.01 \mathrm{~V}$
The oxidations are catalyzed by traces of silver ion.
The excess reagent is readily decomposed by a brief period of boiling:

$$
\mathrm{S}_{2} \mathrm{O}_{8}{ }^{2-}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow 4 \mathrm{SO}_{4}{ }^{2-}+\mathrm{O}_{2}+4 \mathrm{H}^{+}
$$

Sodium Peroxide and Hydrogen Peroxide

$$
\mathrm{H}_{2} \mathrm{O}_{2}+2 \mathrm{H}^{+}+2 \mathrm{e}^{-} \rightarrow 2 \mathrm{H}_{2} \mathrm{O} \quad \mathrm{E}^{0}=1.78 \mathrm{~V}
$$

boiling: $\quad \mathrm{H}_{2} \mathrm{O}_{2} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}+2 \mathrm{O}_{2}(\mathrm{~g})$

Fig. 20-1
A Jones reductor.

20B APPLING STANDARD REDUCING AGENTS

20B-1 Iron (II) Solutions

iron(II) ammonium sulfate, $\mathrm{Fe}\left(\mathrm{NH}_{4}\right)_{2}\left(\mathrm{SO}_{4}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ (Mohr's salt)
iron(II) ethylenediamine sulfate, $\mathrm{FeC}_{2} \mathrm{H}_{4}\left(\mathrm{NH}_{3}\right)_{2}\left(\mathrm{SO}_{4}\right)_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}$ (Oesper's salt)

Air-oxidation of iron (II) takes place rapidly in neutral solutions but is inhibited in the presence of acids, with the most stable preparations being about 0.5 M in $\mathrm{H}_{2} \mathrm{SO}_{4}$.
oxidizing agents \leftarrow excess of standard $\mathrm{Fe}(\mathrm{II}) \leftarrow$ standard soln of pot. dichromate or Ce(IV).
Application: organic peroxides, hydroxylamine, $\mathrm{Cr}(\mathrm{VI}), \mathrm{Ce}(\mathrm{IV}), \mathrm{Mo}(\mathrm{VI})$, nitrate, chlorate, perchlorate and numerous other oxidants.

20B-2 Sodium Thiosulfate

iodine \leftarrow thiosulfate
$2 \mathrm{~S}_{2} \mathrm{O}_{3}{ }^{2-} \rightarrow \mathrm{S}_{4} \mathrm{O}_{6}{ }^{2-}+2 \mathrm{e}^{-}$
excess KI
\downarrow analyte/slightly acidic solution
iodine \leftarrow standard solution of $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$
ex: determination of sod. Hypochlorite in bleaches

$$
\mathrm{Ocl}^{-}+2 \mathrm{I}^{-}+2 \mathrm{H}^{+} \rightarrow \mathrm{Cl}^{-}+\mathrm{I}_{2}+\mathrm{H}_{2} \mathrm{O}
$$

(unmeasured excess KI)
$\mathrm{I}_{2}+2 \mathrm{~S}_{2} \mathrm{O}_{3}{ }^{2-} \rightarrow 2 \mathrm{I}^{-}+\mathrm{S}_{4} \mathrm{O}_{6}{ }^{2-}$
Detecting End Points in Iodine/Thiosulfate Titrations

1. disappearance of the iodine color
$5 \times 10^{-6} \mathrm{M} \mathrm{I}_{2} \quad$--- discernible color
2. starch indicator -- deep blue color

Starch undergoes decomposition in solution with high I_{2} concentration. In titration of excess I_{2} with $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$, addition of the indicator must be deferred until most of the I_{2} has been reduced.

Fig. 20-2 Thousands of glucose molecules polymerize to form huge molecules of β amylose as shown in (a). Molecules of β-amylose tend to assume a helical structure. The iodine species $\mathrm{I}_{3}{ }^{-}$as shown in (b) is incorporated into the amylose helix.

The Stability of Sodium Thiosulfate Solutions

decompose: $\mathrm{S}_{2} \mathrm{O}_{3}^{2-}+\mathrm{H}^{+} \rightarrow \mathrm{HSO}_{3}^{-}+\mathrm{S}(\mathrm{s})$
pH , microorganisms, concentration of the solution, presence of $\mathrm{Cu}(\mathrm{II})$ ion and exposure to sunlight.

Standardizing Thiosulfate Solutions

primary standard: pot. iodate/excess KI (pot. dichromate, pot. bromate, pot. hydrogen iodate, pot. ferricyanide and metallic copper)/ excess KI.

$$
\begin{aligned}
& \mathrm{IO}_{3}^{-}+5 \mathrm{I}^{-}+6 \mathrm{H}^{+} \rightarrow \underset{\uparrow}{3 \mathrm{I}_{2}+2 \mathrm{H}_{2} \mathrm{O}} \\
& \begin{array}{l}
\text { thiosulfate }
\end{array} \\
& \text { t } \mathrm{mol} \mathrm{IO}_{3}^{-}
\end{aligned}=3 \mathrm{~mol} \mathrm{I}_{2}=6 \mathrm{~mol} \mathrm{~S}_{2} \mathrm{O}_{3}^{2-}
$$

Ex. 20-1 A solution of Sod. thiosulfate was standardized by dissolving $0.1210 \mathrm{~g} \mathrm{KIO}_{3}$ ($214.00 \mathrm{~g} / \mathrm{mol}$) in water, adding a large excess of KI, and acidifying with HCl . The liberated I_{2} required 41.64 mL of the thiosulfate soln to decolorize the blue starch/iodine complex. Calculate the molarity of the $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$.

$$
\begin{aligned}
& \text { amount } \mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}=0.1210 \mathrm{~g} \mathrm{KIO}_{3} \times \frac{1 \mathrm{~mol}}{0.21400 \mathrm{~g}} \times 6=3.3925 \mathrm{mmol} \\
& \mathrm{C}_{\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}}=\frac{3.3925 \mathrm{mmol}}{41.64 \mathrm{~mL}}=0.08147 \mathrm{M} \quad \text { or } \frac{\frac{121 \mathrm{mg}}{214 \mathrm{mg} / \mathrm{mmol}} \times 3 \times 2}{41.64 \mathrm{~mL}}=0.08147 \mathrm{M}
\end{aligned}
$$

Tab 20-2 Applications of Sodium Thiosulfate as Reductant

* (1) α-Naphthoflavone; (2) 1,10-phenanthroline iron(II) complex (ferroin); (3) diphenylamine sulfonic acid.
\# (a) Indefinitely stable;
(b) moderately stable, requires periodic standardization;
(c) somewhat unstable, require frequent standardization.
$\dagger \mathrm{E}^{\circ}$ in $\mathrm{H}_{2} \mathrm{SO}_{4}$.

20C-1 The Strong Oxidants-Potassium Permanganate and Cerium(IV)

$$
\begin{gathered}
\mathrm{MnO}_{4}^{-}+8 \mathrm{H}^{+}+5 \mathrm{e}^{-} \rightarrow \mathrm{Mn}^{2+}+4 \mathrm{H}_{2} \mathrm{O} \quad \mathrm{E}^{\mathrm{o}}=1.51 \mathrm{~V}(\text { in } \geqq 0.1 \mathrm{M} \text { strong acid }) \\
\mathrm{Ce}^{4+}+\mathrm{e}^{-} \rightarrow \mathrm{Ce}^{3+} \quad \mathrm{E}^{\mathrm{o}}=1.44 \mathrm{~V}\left(1 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}\right)=1.70 \mathrm{~V}\left(1 \mathrm{M} \mathrm{HClO}_{4}\right)=1.61 \mathrm{~V} \\
\left(1 \mathrm{M} \mathrm{HNO}_{3}\right)
\end{gathered}
$$

Comparison of the Two Reagents

	Ce^{4+}	$\mathbf{M n O}_{4}{ }^{-}$
in sulfuric acid	stable not oxidize Cl^{-}--	decompose slowly oxidize Cl^{-}
HCl soln of analyte primary-standard-grade salt	can be used available	cannot be used
self-indicator	no	color of $\mathrm{MnO}_{4}{ }^{-}$
$\begin{aligned} & \text { cost (} 1 \mathrm{~L} 0.02 \mathrm{M} \text { soln) } \\ & \text { in }<0.1 \mathrm{M} \text { strong acid } \\ & \hline \end{aligned}$	\$ 2.20 (4.40) tendency to form ppt	\$ 0.08

Detecting the End Points
indicators: KMnO_{4} solution -- intense purple color
diphenylamine sulfonic acid
1, 10-phenanthroline complex of Fe (II)
$\mathbf{2} \mathbf{M n O}_{4}{ }^{-}+\mathbf{3} \mathbf{M n}^{2+}+\mathbf{H}_{\mathbf{2}} \mathbf{O} \rightarrow \mathbf{5} \mathbf{M n O}_{\mathbf{2}}(\mathrm{s})+\mathbf{4} \mathbf{H}^{+}$
$\mathrm{K}=10^{47} \rightarrow$ equilibrium $\left[\mathrm{MnO}_{4}{ }^{-}\right] \downarrow$
rate: slow \rightarrow end point fades only gradually over 30s.

in Ce(IV) titration:

indicator: Fe (II) complex of 1,10-phenanthroline or one of its substitute derivatives (Table 20-3)

$$
\mathrm{C}_{12} \mathrm{H}_{8} \mathrm{~N}_{2}+\mathrm{Fe}^{2+} \rightarrow \mathrm{Fe}\left(\mathrm{C}_{12} \mathrm{H}_{8} \mathrm{~N}_{2}\right)_{3}{ }^{2+} \rightarrow \mathrm{Fe}\left(\mathrm{C}_{12} \mathrm{H}_{8} \mathrm{~N}_{2}\right)_{3}{ }^{3+}+\mathrm{e}^{-}
$$

Ferrous complex Ferric complex
(Ferroin) red (Ferriin) weak blue

The Preparation and Stability of Standard Solutions

KMnO_{4} soln: not entirely stable

$$
4 \mathrm{MnO}_{4}^{-}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow 4 \mathrm{MnO}_{2}(\mathrm{~s})+3 \mathrm{O}_{2}(\mathrm{~g})+4 \mathrm{OH}^{-}
$$

decomposition reaction is slow -- catalyzed by light, heat, acids, bases, $\mathrm{Mn}(\mathrm{II})$ and MnO_{2}.

Ex. 20-2 Described how you would prepare 2.0 L of an approximately 0.010 M soln of $\mathrm{KMnO}_{4}(158.03 \mathrm{~g} / \mathrm{mol})$.
KMnO_{4} needed $=2.0 \mathrm{~L} \times 0.010 \mathrm{M} \times 158.03 \mathrm{~g} / \mathrm{mol}=3.16 \mathrm{~g}$
Dissolve about 3.2 g of KMnO_{4} in a little water. After solution is complete add water to bring the volume to about 2.0 L . Heat the solution to boiling for a brief period, and let stand until it is cool. Filter through a glass-filtering crucible and stored in a clean dark bottle.

Analytically Useful Cerium(IV) Compounds

Name	Formula	Molar Mass
Cerium(IV) ammonium nitrate	$\mathrm{Ce}\left(\mathrm{NO}_{3}\right)_{4} \cdot 2 \mathrm{NH}_{4} \mathrm{NO}_{3}$	548.2
Cerium(IV) ammonium sulfate	$\mathrm{Ce}\left(\mathrm{SO}_{4}\right)_{2} \cdot 2\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}$	632.6
Cerium(IV) hydroxide	$\mathrm{Ce}(\mathrm{OH})_{4}$	208.1
Cerium(IV) hydrogen sulfate	$\mathrm{Ce}\left(\mathrm{HSO}_{4}\right)_{4}$	528.4

Primary Standards

Sodium Oxalate.

$$
\begin{aligned}
& 2 \mathrm{MnO}_{4}^{-}+5 \mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}+6 \mathrm{H}^{+} \rightarrow 2 \mathrm{Mn}^{2+}+10 \mathrm{CO}_{2}(\mathrm{~g})+8 \mathrm{H}_{2} \mathrm{O} \\
& \mathrm{Mn}(\mathrm{II}) \text { as a catalyst (autocatalysis) } \\
& 2 \mathrm{Ce}^{4+}+\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4} \rightarrow 2 \mathrm{Ce}^{3+}+2 \mathrm{H}^{+}+2 \mathrm{CO}_{2}
\end{aligned}
$$

Ex. 20-3 You wish to standardize the soln in Ex.20-2 against pure $\mathrm{Na}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$ (134.00 $\mathrm{g} / \mathrm{mol}$). If you want to use between 30 and 45 mL of the reagent for the standardization, what range of masses of the primary standard should you weigh out?
for a $30-\mathrm{mL}$ titration:

$$
\text { amount } \mathrm{KMnO}_{4}=30 \mathrm{~mL} \times 0.010 \mathrm{M}=0.30 \mathrm{mmol}
$$

$$
\text { mass } \mathrm{Na}_{2} \mathrm{C}_{2} \mathrm{O}_{4}=0.30 \mathrm{mmol} \times 5 / 2 \times 0.134=\underline{0.101 \mathrm{~g}}
$$

for a $45-\mathrm{mL}$ titration:

$$
\text { mass } \mathrm{Na}_{2} \mathrm{C}_{2} \mathrm{O}_{4}=45 \times 0.010 \times 5 / 2 \times 0.134=\underline{0.151 \mathrm{~g}}
$$

Ex. 20-4 A 0.1278-g sample of primary-standard $\mathrm{Na}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$ required exactly 33.31 mL of the KMnO_{4} solution in Ex. 20-2 to reach the end point. What was the molarity of the KMnO_{4} reagent?
amount $\mathrm{Na}_{2} \mathrm{C}_{2} \mathrm{O}_{4}=0.1278 \mathrm{~g} \times 1 \mathrm{mmol} / 0.134 \mathrm{~g}=0.95373 \mathrm{mmol}$
$\mathrm{C}_{\mathrm{KMnO}_{4}}=0.95373 \mathrm{mmol} \times(2 / 5) \times(1 / 33.31=0.01145 \mathrm{M}$

Using Potassium Permanganate and Cerium(IV) Solutions: Table 20-5
Ex. 20-5 Aqueous solution containing approximately $3 \%(\mathrm{w} / \mathrm{w}) \mathrm{H}_{2} \mathrm{O}_{2}$ are sold in drug stores as a disinfectant. propose a method for determining the peroxide content of such a preparation using the standard soln described in Exs.20-3 and 4. Assume that you wish to use between 35 and 45 mL of the reagent for a titration.
$5 \mathrm{H}_{2} \mathrm{O}_{2}+2 \mathrm{MnO}_{4}^{-}+6 \mathrm{H}^{+} \rightarrow 5 \mathrm{O}_{2}+2 \mathrm{Mn}^{2+}+8 \mathrm{H}_{2} \mathrm{O}$
35-45 mL reagent:
amount $\mathrm{KMnO}_{4}=(35 \sim 45) \mathrm{mL} \times 0.01145 \mathrm{M}=0.401 \sim 0.515 \mathrm{mmol}$
amount $\mathrm{H}_{2} \mathrm{O}_{2}=(0.401 \sim 0.515) \mathrm{mmol} \times(5 / 2)=1.00 \sim 1.29 \mathrm{mmol}$
mass sample $=(1.00 \sim 1.29) \times 0.03401 \times(100 / 3)=1.1 \sim 1.5 \mathrm{~g}$
Thus we could weigh out from 1.1 to 1.5 g samples. These should be diluted to perhaps 75 to 100 mL with water and made slightly acidic with dilute $\mathrm{H}_{2} \mathrm{SO}_{4}$ before titration.

20C-2 Potassium Dichromate

$\mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-}+14 \mathrm{H}^{+}+6 \mathrm{e}^{-} \rightarrow 2 \mathrm{Cr}^{3+}+7 \mathrm{H}_{2} \mathrm{O} \quad \mathrm{E}^{0}=1.33 \mathrm{~V}$
orange green
in 1 M HCl or $\mathrm{H}_{2} \mathrm{SO}_{4} \quad \mathrm{E}^{\mathbf{0}}=1.0 \sim 1.1 \mathrm{~V}$
Advantages: stable, can be boiled without decomposition and do not react with HCl , primary-standard reagent is available and at a modest cost.
Disadvantage: lower electrode potential and the slowness reaction.

Preparing Dichromate Solutions

reagent-grade $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ dried at $150^{\circ} \mathrm{C}$ to $200^{\circ} \mathrm{C}$ before being weighed indicator: diphenylamine sulfonic acid,

```
violet (oxidized) }->\mathrm{ colorless (reduced)
```


Applying Potassium Dichromate Solutions

1. titration of $\mathrm{Fe}(\mathrm{II})$: \quad in moderate conc. of HCl

$$
\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}+6 \mathrm{Fe}^{2+}+14 \mathrm{H}^{+} \rightarrow 2 \mathrm{Cr}^{3+}+6 \mathrm{Fe}^{3+}+7 \mathrm{H}_{2} \mathrm{O}
$$

2. indirect determination of oxidizing agents (nitrate, chlorate, permanganate, dichromate and organic peroxides):
analyte/acidic solution + measured excess $\mathrm{Fe}(\mathrm{II}) \rightarrow$
back-titrated excess Fe(II)

Ex. 20-6 A $5.00-\mathrm{mL}$ sample of brandy was diluted to 1.000 L in a volumetric flask. The ethanol $\left(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}\right)$ in a $25.00-\mathrm{mL}$ aliquot of the diluted soln was distilled into 50.00 mL of $0.02000 \mathrm{M} \mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$, and oxidized to acidic acid with heating.
$3 \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}+2 \mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-}+16 \mathrm{H}^{+} \rightarrow 4 \mathrm{Cr}^{3+}+3 \mathrm{CH}_{3} \mathrm{COOH}+11 \mathrm{H}_{2} \mathrm{O}$
After cooling, 20.00 mL of $0.1253 \mathrm{M} \mathrm{Fe}^{2+}$ were pipetted into the flask. The excess Fe^{2+} was then titrated with 7.46 mL of the standard $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ to a diphenylamine sulfonic acid end point. Calculate the percent $(\mathrm{w} / \mathrm{v}) \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}(46.07 \mathrm{~g} / \mathrm{mol})$ in the brandy.
amount $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}=(50.00+7.46) \mathrm{mL} \times 0.02000=1.1492 \mathrm{mmol}$
$\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ consumed by $\mathrm{Fe}^{2+}=20.00 \times 0.1253 \times 1 / 6=0.41767 \mathrm{mmol}$
$\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ consumed by $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}=1.1492-0.41767=0.73153 \mathrm{mmol}$
mass $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}=0.73153 \times(3 / 2) \times 0.04607=0.050552 \mathrm{~g}$
percent $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}=0.050552 /(5.00 \times 25.00 / 1000) \times 100 \%=40.44 \%$

20C-3 Iodine

weak oxidizing agents: determination of strong reductants

$$
\mathbf{I}_{3}{ }^{-}+2 \mathbf{e}^{-} \rightarrow 3 \mathbf{I}^{-} \quad \mathbf{E}^{0}=0.536 \mathrm{~V}
$$

advantages: selectivity, sensitive and reversible indicator
disadvantage: lack stability

Properties of Iodine Solutions

$$
\mathbf{I}_{2}(\mathbf{s})+\mathbf{I}^{-} \rightarrow \mathbf{I}_{3}^{-} \quad \mathrm{K}=7.1 \times 10^{2}
$$

lack stability: volatility of iodine, slowly attacks most organic materials, airoxidation of iodide ion (\uparrow conc.). $\quad 4 \mathbf{I}^{-}+\mathbf{O}_{2}(\mathbf{g})+\mathbf{4} \mathbf{H}^{+} \rightarrow 2 \mathbf{I}_{2}+2 \mathbf{H}_{2} \mathbf{O}$

Standardizing and Appling Iodine Solutions

Standardization: anhydrous Na thiosulfate or Ba thiosulfate

Iodimetry: (direct method)
$\mathrm{I}_{2} \rightarrow$ reducing agents (ex: thiosulfate or arsenites)
Iodometry: (indirect method)
oxidizing agents + excess KI $\rightarrow \mathbf{I}_{\mathbf{2}} \leftarrow$ thiosulfate

Indicator:

1. Starch indicator solution

$$
\mathbf{I}_{2}+\mathbf{I}^{-} \rightarrow \mathbf{I}_{3}^{-}+\text {starch } \rightarrow \mathbf{I}_{3}^{-} \text {-starch complex (blue-purple) }
$$

2. $\mathrm{CCl}_{4}, \mathrm{HCCl}_{3}, \mathrm{CS}_{2}$
\mathbf{I}_{2} in $\mathrm{CCl}_{4}, \mathrm{HCCl}_{3}, \mathrm{CS}_{2} \rightarrow$ violet color

Preparation of 0.1 N Iodine solution

$12.7 \mathrm{~g} \mathrm{I}_{2}+40 \mathrm{~g} \mathrm{KI} / 20 \mathrm{~mL} \mathrm{H} \mathbf{2} \mathrm{O} \rightarrow$ adding $\mathrm{H}_{2} \mathrm{O}$ to 1 L
Standardization－Primary standard：Arsenic（III）oxide， $\mathbf{A s}_{\mathbf{2}} \mathbf{O}_{\mathbf{3}}$
$\mathrm{As}_{2} \mathrm{O}_{3}+6 \mathrm{NaOH} \rightarrow 2 \mathrm{Na}_{3} \mathrm{AsO}_{3}+3 \mathrm{H}_{2} \mathrm{O}$
$\mathrm{Na}_{3} \mathrm{AsO}_{3}+3 \mathrm{HCl} \rightarrow \mathrm{H}_{3} \mathrm{AsO}_{3}+3 \mathrm{NaCl}$
$\mathrm{H}_{3} \mathrm{AsO}_{3}+\mathrm{H}_{2} \mathrm{O}+\mathrm{I}_{2} \rightarrow \mathrm{H}_{3} \mathrm{AsO}_{4}+2 \mathrm{HI}$
$\mathrm{pH} \downarrow: \quad \mathrm{H}_{3} \mathrm{AsO}_{3}+\mathrm{H}_{2} \mathrm{O}+\mathrm{I}_{2} \leftarrow \mathrm{H}_{3} \mathrm{AsO}_{4}+2 \mathrm{H}^{+}+2 \mathrm{I}^{-}$
$\mathrm{pH} \uparrow: \quad \mathrm{I}_{2}+2 \mathrm{OH}^{-} \rightarrow \mathrm{IO}^{-}+\mathrm{I}^{-}+\mathrm{H}_{2} \mathrm{O}$

$$
\begin{aligned}
& 3 \mathrm{IO}^{-} \rightarrow \mathrm{IO}_{3}^{-}+2 \mathrm{I}^{-} \\
& \text {strong oxidizing agent }
\end{aligned}
$$

滴定中加入 $\mathrm{NaHCO}_{3} \quad[\mathrm{pH}: 7 \sim 8]$
$\mathrm{Na}_{3} \mathrm{AsO}_{3}+\mathrm{I}_{2}+2 \mathrm{NaHCO}_{3} \rightarrow \mathrm{Na}_{3} \mathrm{AsO}_{4}+2 \mathrm{NaI}+2 \mathrm{CO}_{2} \uparrow+\mathrm{H}_{2} \mathrm{O}$
Calculation：$\quad N$ of Iodine $=\frac{\frac{\mathrm{mg} \mathrm{As}_{2} \mathrm{O}_{3}}{197.8 / 4}}{\mathrm{~mL} \text { Iodine }}$

（1）Direct Iodimetric Titration

a． $\mathrm{H}_{3} \mathrm{AsO}_{3}+\mathrm{H}_{2} \mathrm{O}+\mathrm{I}_{2} \rightarrow \mathrm{H}_{3} \mathrm{AsO}_{4}+2 \mathrm{H}^{+}+2 \mathrm{I}^{-}$
b．Assay of Ascorbic Acid（Vit C）

（2）Residual Titration（ $\mathrm{I}_{2}-\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ ）

$$
\begin{aligned}
\mathrm{NaHSO}_{3}+\mathrm{I}_{2}+\mathrm{H}_{2} \mathrm{O} & \rightarrow \mathrm{NaHSO}_{4}+2 \mathrm{HI} \\
\mathrm{I}_{2}+2 \mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3} & \rightarrow 2 \mathrm{NaI}+\mathrm{Na}_{2} \mathrm{~S}_{4} \mathrm{O}_{6}
\end{aligned}
$$

（3）Iodometry：

Sample $+\quad$ KI（excess）$\rightarrow \mathbf{I} 2 \leftarrow$ Na2S2O3			
		\rightarrow	
	$\left(1 \mathrm{e}^{-}\right)$	$(+1)$	

a． $\mathrm{CuSO}_{4}+4 \mathrm{KI} \rightarrow 2 \mathrm{CuI} \downarrow+\mathrm{I}_{2}+2 \mathrm{~K}_{2} \mathrm{SO}_{4}$

$$
\mathrm{I}_{2}+2 \mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3} \quad \rightarrow 2 \mathrm{NaI}+\mathrm{Na}_{2} \mathrm{~S}_{4} \mathrm{O}_{6}
$$

b. Assay of sodium hypochlorite solution ($\mathbf{N a O C l}$)
$\mathrm{NaOCl}+\mathrm{H}^{+} \rightarrow \mathbf{H O C l}$
(+1) (2e-) (-1)
$\mathbf{H O C l}+2 \mathrm{KI}+\mathbf{H O A c} \rightarrow \mathrm{I}_{2}+\mathrm{KCl}+\mathrm{KOAc}+\mathrm{H}_{2} \mathrm{O}$

$$
\mathbf{I}_{2}+2 \mathrm{Na}_{2} \mathbf{S}_{2} \mathrm{O}_{3} \rightarrow 2 \mathrm{NaI}+\mathrm{Na}_{2} \mathbf{S}_{4} \mathrm{O}_{6}
$$

Table 20-6 Some Applications of Iodine Solutions

Analyte	Half-Reaction
As	$\mathrm{H}_{3} \mathrm{ASO}_{3}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}_{3} \mathrm{AsO}_{4}+2 \mathrm{H}^{+}+2 \mathrm{e}^{-}$
Sb	$\mathrm{H}_{3} \mathrm{SbO}_{3}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}_{3} \mathrm{SbO}_{4}+2 \mathrm{H}^{+}+2 \mathrm{e}^{-}$
Sn	$\mathrm{Sn}^{2+} \rightarrow \mathrm{Sn}^{4+}+2 \mathrm{e}^{-}$
$\mathrm{H}_{2} \mathrm{~S}$	$\mathrm{H}_{2} \mathrm{~S} \rightarrow \mathrm{~S}(\mathrm{~s})+2 \mathrm{H}^{+}+2 \mathrm{e}^{-}$
SO_{2}	$\mathrm{SO}_{3}{ }^{2-}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{SO}_{4}{ }^{2-}+2 \mathrm{H}^{+}+2 \mathrm{e}^{-}$
$\mathrm{S}_{2} \mathrm{O}_{3}{ }^{2-}$	$2 \mathrm{~S}_{2} \mathrm{O}_{3}{ }^{2-} \rightarrow \mathrm{S}_{4} \mathrm{O}_{6}{ }^{2-}+2 \mathrm{e}^{-}$
$\mathrm{N}_{2} \mathrm{H}_{4}$	$\mathrm{~N}_{2} \mathrm{H}_{4} \rightarrow \mathrm{~N}_{2}(\mathrm{~g})+4 \mathrm{H}^{+}+4 \mathrm{e}^{-}$
Ascorbic acid	$\mathrm{C}_{6} \mathrm{H}_{8} \mathrm{O}_{6} \rightarrow \mathrm{C}_{6} \mathrm{H}_{6} \mathrm{O}_{6}+2 \mathrm{H}^{+}+2 \mathrm{e}^{-}$

** Dichloroindophenol Titration

--Determination of Ascorbic acid Preparation

Blue in basic sol'n

colorless Pink in acid sol'n

End point: pink (self-indicator)
Vit \mathbf{C} titration in metaphosphoric acid and acetic acid sol'n

20C-4 Potassium Bromate as a Source of Bromine

Primary-standard KBrO_{3} is available, stable
standard 0.1 N Bromine sol'n (Koppeschaar's sol'n): ($3 \mathrm{~g} \mathrm{KBrO} 3+15 \mathrm{~g} \mathrm{KBr}) / 1 \mathrm{~L} \mathrm{H}_{2} \mathrm{O}$
Assay of sample: aniline, phenol, salicylic acid, resorcinol etc.

$$
\mathrm{BrO}_{3}^{-}+5 \mathrm{Br}^{-}+6 \mathrm{H}^{+} \rightarrow 3 \mathrm{Br}_{2}+3 \mathbf{H}_{2} \mathbf{O}
$$

standard soln excess

$$
1 \mathrm{~mol} \mathrm{KBrO}_{3}=3 \mathrm{~mol} \mathrm{Br}_{2}
$$

$$
\begin{equation*}
2 \mathrm{I}^{-}+\mathrm{Br}_{2} \rightarrow \mathrm{I}_{2}+2 \mathrm{Br}^{-} \tag{excessKI}
\end{equation*}
$$

$$
\mathrm{I}_{2}+2 \mathrm{~S}_{2} \mathrm{O}_{3}{ }^{2-} \rightarrow \mathrm{S}_{4} \mathrm{O}_{6}^{2-}+2 \mathrm{I}^{-}
$$

(ppt) soluble in CHCl_{3}

Substitution Reactions

halogen substitution: replacement of H in an aromatic ring by a halogen.
determination of aromatic compound that contain strong ortho-para-directing groups, particularly amines and phenols.

Ex: 1. Determination of 8-hydroxyquinoline

2. Determination of aluminum

$$
\begin{aligned}
& \mathrm{Al}^{3+}+3 \mathrm{HOC}_{9} \mathrm{H}_{6} \mathrm{~N} \xrightarrow{\mathrm{pH} 4-9} \mathrm{Al}\left(\mathrm{OC}_{9} \mathrm{H}_{6} \mathrm{~N}\right)_{3}(\mathrm{~S})+3 \mathrm{H}^{+} \\
& \mathrm{Al}\left(\mathrm{OC}_{9} \mathrm{H}_{6} \mathrm{~N}\right)_{3}(S) \xrightarrow{\text { hot } 4 \mathrm{M} \mathrm{HCl}} 3 \mathrm{HOC}_{9} \mathrm{H}_{6} \mathrm{~N}+\mathrm{Al}^{3+} \\
& 3 \mathrm{HOC}_{9} \mathrm{H}_{6} \mathrm{~N}+6 \mathrm{Br}_{2} \rightarrow 3 \mathrm{HOC}_{9} \mathrm{H}_{4} \mathrm{NBr}_{2}+6 \mathrm{HBr}
\end{aligned}
$$

Ex. 20-7 A 0.2891-g sample of an antibiotic powder containing sulfanilamide was dissolved in HCl and the solution diluted to 100.0 mL . A $20.00-\mathrm{mL}$ aliquot was transferred to a stoppered flask and 25.00 mL of $0.01767 \mathrm{M} \mathrm{KBrO}_{3}$ added. About 10 g of KBr was added to form Br_{2}, which brominated the sulfanilamide in the sample. After 10 min , an excess of KI was added and the liberated iodine titrated with 12.92 mL of 0.1215 M sodium thiosulfate. The reaction are

$$
\mathrm{BrO}_{3}^{-}+5 \mathrm{Br}^{-}+6 \mathrm{H}^{+} \rightarrow 3 \mathrm{Br}_{2}+3 \mathrm{H}_{2} \mathrm{O}
$$

$$
\begin{aligned}
& \mathrm{Br}_{2}+2 \mathrm{I}^{-} \rightarrow 2 \mathrm{Br}^{-}+\mathrm{I}_{2} \quad \text { (excess KI) } \\
& \mathrm{I}_{2}+2 \mathrm{~S}_{2} \mathrm{O}_{3}^{2-} \rightarrow \mathrm{S}_{4} \mathrm{O}_{6}{ }^{2-}+2 \mathrm{I}^{-}
\end{aligned}
$$

Calculate the $\% \mathrm{NH}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{SO}_{2} \mathrm{NH}_{2}(172.21 \mathrm{~g} / \mathrm{mol})$ in the powder.
total amount $\mathrm{Br}_{2}=25.00 \mathrm{~mL} \times 0.01767 \mathrm{M} \times 3=1.32525 \mathrm{mmol}$
amount excess $\mathrm{Br}_{2}=$ amount $\mathrm{I}_{2}=12.92 \mathrm{~mL} \times 0.1215 \mathrm{M} \times(1 / 2)=0.78489 \mathrm{mmol}$ The amount of Br_{2} consumed by the sample $=1.32525-0.78489=0.54036 \mathrm{mmol}$
mass analyte $=0.54036 \times(1 / 2) \times 0.17221=0.046528 \mathrm{~g}$

$$
\% \text { analyte }=\frac{0.046528}{0.2891 \times \frac{20.00 \mathrm{~mL}}{100 \mathrm{~mL}}} \times 100 \%=80.47 \%
$$

$$
\text { or } \frac{(0.01767 \times 3 \times 2 \times 25-0.1215 \times 12.92) \times \frac{172.21}{4} \times 5}{289.1} \times 100 \%=80.47 \%
$$

Addition Reactions

20C-5 Determining Water with the Karl Fischer Reagent

Karl Fischer Reagent: $\mathrm{I}_{2}, \mathrm{SO}_{2}$, organic base such as pyridine $\left(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}\right)$ or imidazole $/ \mathrm{CH}_{3} \mathrm{OH}$ or low-molecular-mass alcohol

In aprotic solvent: $\mathrm{I}_{2}+\mathrm{SO}_{2}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{HI}+\mathrm{H}_{2} \mathrm{SO}_{4} \quad 2 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O} \rightarrow 1 \mathrm{~mol} \mathrm{I}_{2}$
Classical chemistry: use anhydrous methanol as solvent, and excess pyridine
$\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N} \cdot \mathrm{I}_{2}+\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N} \cdot \mathrm{SO}_{2}+\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}+\mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N} \cdot \mathrm{HI}+\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N} \cdot \mathrm{SO}_{3}$
$\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}^{+} \cdot \mathrm{SO}_{3}^{-}+\mathrm{CH}_{3} \mathrm{OH} \rightarrow \mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}(\mathrm{H}) \mathrm{SO}_{4} \mathrm{CH}_{3}$
$1 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O} \rightarrow 1 \mathrm{~mol} \mathrm{I}_{2}, 1 \mathrm{~mol} \mathrm{SO} 2,3 \mathrm{~mol} \mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}$

Pyridine-free chemistry

Replaced by other amines: imidazole
(1) Solvolysis: $2 \mathrm{ROH}+\mathrm{SO}_{2} \rightarrow \mathrm{RSO}_{3}^{-}+\mathrm{ROH}_{2}^{+}$
(2) Buffering: $\quad \mathrm{B}+\mathrm{RSO}_{3}^{-}+\mathrm{ROH}_{2}^{+} \rightarrow \mathrm{BH}^{+} \mathrm{SO}_{3} \mathrm{R}^{-}+\mathrm{ROH}$
(3) Redox: $\quad \mathrm{B} \cdot \mathrm{I}_{2}+\mathrm{BH}^{+} \mathrm{SO}_{3} \mathrm{R}^{-}+\mathrm{B}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{BH}^{+} \mathrm{SO}_{4} \mathrm{R}^{-}+2 \mathrm{BH}^{+} \mathrm{I}^{-}$
$1 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O} \rightarrow 1 \mathrm{~mol}_{2}$

Interfering reactions

