

Chapter 2: Discrete Distributions

- **Chapter 2: Discrete Distributions**
- 2.1 Random Variables of the Discrete Type
- 2.2 Mathematical Expectation
- **2.3 Special Mathematical Expectations**
- 2.4 The Binomial Distribution
- 2.5 The Negative Binomial Distribution
- **2.6 The Poisson Distribution**

Book : PROBABILITY AND STATISTICAL INFERENCE ,Ninth Edition , Robert V. Hogg Elliot A. Tanis Dale L. Zimmerman

Distributions	probability mass function(pmf) P(X=x)	Value of r.v	Mean μ	Variance σ^2 Standard deviation $\sigma = \sqrt{Variance}$	Moment generating <i>M</i> (<i>t</i>)	R.V X
Discrete uniform m > 0	$\frac{1}{m}$	$x = 1, 2, \dots, m$ m: positive integer	$\frac{m+1}{2}$	$\frac{m^2-1}{12}$	$\frac{e^t(1-e^{tm})}{m(1-e^t)}$	Each value of the random variable is equally likely
Bernoulli 0 < p < 1	$p^x(1-p)^{1-x}$	<i>x</i> = 0,1	р	pq	$(q + pe^t)$	Experiment has only two outcomes
Binomial b(n, p)	$\binom{n}{\chi}p^{\chi}(1-p)^{n-\chi}$	$x = 0, 1, \dots, n$	np	npq	$(q + pe^t)^n$	X: is the number of successes in a random sample of size n
Hypergeometric	$\frac{\binom{N_1}{x}\binom{N_2}{n-x}}{\binom{N}{n}}$	$x \le n,$ $x \le N_1,$ $n - x \le N_2$	$n(\frac{N_1}{N})$	$n\left(\frac{N_1}{N}\right)\left(\frac{N_2}{N}\right)\left(\frac{N-n}{N-1}\right)$		$N = N_1 + N_2 \ N_1 > 0, N_2 > 0$ X: number of successes in the sample
Negative binomial 0 r = 1, 2, 3,	$\binom{x-1}{r-1}p^r(1-p)^{n-r}$	$x = r, r + 1, \dots$	$\frac{r}{p}$	$\frac{rq}{p^2}$	$\frac{(pe^t)^r}{[1-qe^t]^r}$	X: denote the number of trials needed to observe the <i>rth</i> success
Geometric	$p (1-p)^{x-1}$	<i>x</i> = 1,2	$\frac{1}{p}$	$\frac{q}{p^2}$	$\frac{pe^t}{[1-qe^t]}$	X : number of the trial on which the first success occurs
Poisson	$\frac{\lambda^{x}e^{-\lambda}}{x!}$	<i>x</i> = 0,1,	λ	λ	$e^{\lambda(e^t-1)}$	X: number of events occurring within a fixed interval of time or space.

2.2 MATHEMATICAL EXPECTATION

2.2-2. Let the random variable X have the *pmf*

$$f(x) = \frac{(|x| + 1)^2}{9}$$
, $x = -1, 0, 1$.

Compute E(X), $E(X^2)$, and $E(3X^2 - 2X + 4)$.

2.2-3. Let the random variable X be the number of days that a certain patient needs to be in the hospital. Suppose X has the pmf

$$f(x) = \frac{5-x}{10}$$
, $x = 1, 2, 3, 4.$

If the patient is to receive \$200 from an insurance company for each of the first two days in the hospital and \$100 for each day after the first two days, what is the <u>expected payment for the hospitalization?</u>

2.2-4. An insurance company sells an automobile policy with a deductible of one unit. Let X be the amount of the loss having pmf

$$f(x) = \begin{cases} 0.9 , x = 0.\\ \frac{c}{x} , x = 1,2,3,4,5,6. \end{cases}$$

where \mathbf{c} is a constant. Determine \mathbf{c} and the expected value of the amount the insurance company must pay.

2.3 SPECIAL MATHEMATICAL EXPECTATIONS

2.3-1. Find the mean and variance for the following discrete distributions:

(a)
$$f(x) = \frac{1}{5}$$
, $x = 5, 10, 15, 20, 25.$

(b)
$$f(x) = 1$$
, $x = 5$.

(c)
$$f(x) = \frac{4-x}{6}$$
, $x = 1, 2, 3$.

2.3-2. For each of the following distributions, find $\mu = E(X)$, E[X(X - 1)], and $\sigma^2 = E[X(X - 1)] + E(X) - \mu^2$:

(a)
$$f(x) = \frac{3!}{x!(3-x)!} \left(\frac{1}{4}\right)^x \left(\frac{3}{4}\right)^{3-x}$$
, $x = 0, 1, 2, 3.$

(b)
$$f(x) = \frac{4!}{x!(4-x)!} \left(\frac{1}{2}\right)^4$$
, $x = 0, 1, 2, 3, 4$.

2.3-4. Let μ and σ^2 denote the mean and variance of the random variable *X*. Determine $E\left[\frac{X-\mu}{\sigma}\right]$ and $E\left\{\left[\frac{X-\mu}{\sigma}\right]^2\right\}$.

2.3-5. Consider an experiment that consists of selecting a card at random from an ordinary deck of cards. Let the random variable *X* equal the value of the selected card, where Ace = 1, Jack = 11, Queen = 12, and King = 13. Thus, the space of *X* is $S = \{1, 2, 3, ..., 13\}$. If the experiment is performed in an unbiased manner, assign probabilities to these 13 outcomes and compute the mean μ of this probability distribution.

2.3-7. Let *X* equal an integer selected at random from the first *m* positive integers, $\{1, 2, ..., m\}$. Find the value of *m* for which E(X) = Var(X). (See Zerger in the references.)

2.3-8. Let X equal the larger outcome when a pair of fair four-sided dice is rolled. The pmf of X is

$$f(x) = \frac{2x - 1}{16}$$
, $x = 1, 2, 3, 4$.

Find the mean, variance, and standard deviation of *X*.

2.3-11. If the moment-generating function of *X* is

$$M(t) = \frac{2}{5} e^{t} + \frac{1}{5} e^{2t} + \frac{2}{5} e^{3t},$$

find the mean, variance, and *pmf* of *X*.

2.3-19. Given a random permutation of the integers in the set $\{1, 2, 3, 4, 5\}$, let X equal the number of integers that are in their natural position. The moment-generating function of X is

$$M(t) = \frac{44}{120} + \frac{45}{120}e^{t} + \frac{20}{120}e^{2t} + \frac{10}{120}e^{3t} + \frac{1}{120}e^{5t}$$

(a) Find the mean and variance of X.

2.4 THE BINOMIAL DISTRIBUTION

2.4-1 An urn contains 7 red and 11 white balls. Draw one ball at random from the urn. Let X = 1 if a red ball is drawn, and X = 0 if a white ball is drawn. Give the *pmf*, mean, and variance of X

2.4-2 Suppose that in Exercise 2.4-1, X = 1 if a red ball is drawn and X = -1 if a white ball is drawn. Give the *pmf*, mean, and variance of X.

2.4-4 It is claimed that 15% of the ducks in a particular region have patent schistosome infection. Suppose that **seven ducks** are selected at random. Let *X* equal the number of ducks that are infected.

- (a) Assuming independence, how is X distributed?
- (b) Find (i) $P(X \ge 2)$, (ii) P(X = 1), and (iii) $P(X \le 3)$.

2.4-11 A random variable X has a binomial distribution, with mean 6 and variance 3.6.

Find P(X = 4).

2.4-19 Define the *pmf* and give the values of μ , σ^2 , and σ when the moment-generating function of X is defined by

(a)
$$M(t) = \frac{1}{3} + \left(\frac{2}{3}\right)e^{t}$$

(b) $M(t) = (0.25 + 0.75e^{t})^{12}$

2.5 THE NEGATIVE BINOMIAL DISTRIBUTION

2.5-2. Show that 63/512 is the probability that the fifth head is observed on the tenth independent flip of a fair coin.

2.5-4. Suppose an airport metal detector catches a person with metal 99% of the time. That is, it misses detecting a person with metal 1% of the time. Assume independence of people carrying metal. What is the probability that the first metal-carrying person missed (not detected) is among the first 50 metal-carrying persons scanned?

2.6 THE POISSON DISTRIBUTION

2.6-1: Let X have a Poisson distribution with a mean of 4. Find

- (a) $P(2 \le X \le 5)$.
- (b) $P(X \ge 3)$.
- (c) $P(X \leq 3)$.

2.6-2: Let X have a Poisson distribution with a variance of 3. Find P(X = 2).

2.6-4: Find P(X = 4) if X has a Poisson distribution such that 3P(X = 1) = P(X = 2).

2.6-5: Flaws in a certain type of drapery material appear on the average of one in 150 square feet. If we assume a Poisson distribution, find the probability of at most one flaw appearing in 225 square feet.

2.6-10: The mean of a Poisson random variable X is $\mu = 9$.

Compute $P(\mu - 2\sigma < X < \mu + 2\sigma)$.

Discrete Distributions

Bernoulli	$f(x) = p^{x}(1-p)^{1-x}, x = 0, 1$
0	$M(t) = 1 - p + pe^t, \qquad -\infty < t < \infty$
	$\mu = p, \qquad \sigma^2 = p(1-p)$
Binomial $b(n, p)$	$f(x) = \frac{n!}{x!(n-x)!} p^x (1-p)^{n-x}, \qquad x = 0, 1, 2, \dots, n$
0	$M(t) = (1 - p + pe^t)^n, \qquad -\infty < t < \infty$
	$\mu = np, \qquad \sigma^2 = np(1-p)$
Geometric	$f(x) = (1 - p)^{x-1}p, \qquad x = 1, 2, 3, \dots$
0	$M(t) = \frac{pe^{t}}{1 - (1 - p)e^{t}}, \qquad t < -\ln(1 - p)$
	$\mu = \frac{1}{p}, \qquad \sigma^2 = \frac{1-p}{p^2}$
Hypergeometric $N_1 > 0, N_2 > 0$	$f(x) = \frac{\binom{N_1}{x}\binom{N_2}{n-x}}{\binom{N}{n}}, \qquad x \le n, x \le N_1, n-x \le N_2$
$N = N_1 + N_2$	$\mu = n \left(\frac{N_1}{N}\right), \qquad \sigma^2 = n \left(\frac{N_1}{N}\right) \left(\frac{N_2}{N}\right) \left(\frac{N-n}{N-1}\right)$
Negative Binomial	$f(x) = \binom{x-1}{r-1} p^r (1-p)^{x-r}, \qquad x = r, r+1, r+2, \dots$
$0 r = 1, 2, 3, \dots$	$M(t) = \frac{(pe^t)^r}{[1 - (1 - p)e^t]^r}, \qquad t < -\ln(1 - p)$
	$\mu = r\left(\frac{1}{p}\right), \qquad \sigma^2 = \frac{r(1-p)}{p^2}$
Poisson	$f(x) = \frac{\lambda^{x} e^{-\lambda}}{x!}, \qquad x = 0, 1, 2, \dots$
X > 0	$M(t) = e^{\lambda(e^t - 1)}, -\infty < t < \infty$
	$\mu = \lambda, \qquad \sigma^2 = \lambda$
Uniform m > 0	$f(x) = \frac{1}{m}, \qquad x = 1, 2, \dots, m$
	$\mu = \frac{m+1}{2}, \qquad \sigma^2 = \frac{m^2 - 1}{12}$