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Discrete uniform 1 m+1 m2—1 ef(1—et™) Each value of the random variable
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integer
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0<p<l )Pr(l—p)"‘r x=rr+1, = 02 1 —aetl”
r—1 p p [1— qget] needed to observe the rth success
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Geometric p(1—p)*1 x =12 - — —
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e ete=1) i . .
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2.2 MATHEMATICAL EXPECTATION
2.2-2. Let the random variable X have the pmf

ROSCES

Compute E(X),E(X?),and E(3X% — 2X + 4).

= —1,0,1.

2.2-3. Let the random variable X be the number of days that a certain patient needs to be in the
hospital. Suppose X has the pmf

X
=— = 1,2,3,4.
) =2 x = 1,23,

If the patient is to receive $200 from an insurance company for each of the first two days in the
hospital and $100 for each day after the first two days, what is the expected payment for the
hospitalization?

2.2-4. An insurance company sells an automobile policy with a deductible of one unit. Let X be
the amount of the loss having pmf

0.9 x=0.
= (o
e = x=123456.

where cis a constant. Determine ¢ and the expected value of the amount the insurance
company must pay.

2.3 SPECIAL MATHEMATICAL EXPECTATIONS

2.3-1. Find the mean and variance for the following discrete distributions:

(@) £ (x) =§ ,x = 5,10,15,20, 25.

b)fx)=1 ,x = 5.
(c)f(x)=4_Tx x = 1,2,3.

2.3-2. For each of the following distributions, find u = E(X), E[X(X —1)],and 6®> = E[X(X —
D]+ EX) — pu?:

(a) f(x) = — (1)x (i)s_x x = 01,23

¥G@-—\a) \4

(b) f(x) = —— (1)4,x=0,1,2,3,4.

x!(4—x)! \2
2.3-4. Let u and o2 denote the mean and variance of the random variable X. Determine

E[=4 andE{[%]z}.

2.3-5. Consider an experiment that consists of selecting a card at random from an ordinary
deck of cards. Let the random variable X equal the value of the selected card, where Ace = 1,
Jack = 11,Queen = 12,and King = 13.Thus, thespaceof XisS = {1,2,3,...,13}.If the
experiment is performed in an unbiased manner, assign probabilities to these 13 outcomes and
compute the mean u of this probability distribution.
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2.3-7. Let X equal an integer selected at random from the first m positive integers, {1, 2,...,m}.
Find the value of m for which E(X) = Var(X). (See Zerger in the references.)

2.3-8. Let X equal the larger outcome when a pair of fair four-sided dice is rolled. The pmf of X
is

2x—1

fo0) ="

,x = 1,2,3,4.

Find the mean, variance, and standard deviation of X.

2.3-11. If the moment-generating function of X is

2 1 2
M(t)=§et +§ e?t +§ €3t,

find the mean, variance, and pmf of X.

2.3-19. Given a random permutation of the integers in the set {1, 2, 3,4, 5}, let X equal the
number of integers that are in their natural position. The moment-generating function of X is
44 45 20 10 1

M(t) = t 26 , Y 3t , T st
O =T70"120¢ *120¢ T120¢ T120¢

(a) Find the mean and variance of X.
2.4 THE BINOMIAL DISTRIBUTION

2.4-1 Anurncontains 7 red and 11 white balls. Draw one ball at random from the urn. Let X =
1 if ared ballis drawn, and X = 0 if a white ball is drawn. Give the pmf, mean, and variance of X

2.4-2 Suppose that in Exercise 2.4-1, X = 1lifaredballisdrawnand X = —1 if a white ballis
drawn. Give the pmf, mean, and variance of X.

2.4-4 Itis claimed that 15% of the ducks in a particular region have patent schistosome
infection. Suppose that seven ducks are selected at random. Let X equal the number of ducks
that are infected.

(a) Assuming independence, how is X distributed?
(b) Find (i) P(X = 2),(ii) P(X = 1),and (iii) P(X < 3).

2.4-11 Arandom variable X has a binomial distribution, with mean 6 and variance 3. 6.
Find P(X = 4).

2.4-19 Define the pmf and give the values of 4, 02, and o when the moment-generating function
of X is defined by

@M() =3 + (3)et

(b) M(t) = (0.25 + 0.75¢t)!2
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2.5 THE NEGATIVE BINOMIAL DISTRIBUTION

2.5-2. Show that 63 /512 is the probability that the fifth head is observed on the tenth
independent flip of a fair coin.

2.5-4. Suppose an airport metal detector catches a person with metal 99% of the time. That is, it
misses detecting a person with metal 1% of the time. Assume independence of people carrying
metal. What is the probability that the first metal-carrying person missed (not detected) is
among the first 50 metal-carrying persons scanned?

2.6 THE POISSON DISTRIBUTION

2.6-1: Let X have a Poisson distribution with a mean of 4. Find

(@P(2 < X <5).

(b)P(X = 3).

(c)P(X < 3).

2.6-2: Let X have a Poisson distribution with a variance of 3. Find P(X = 2).

2.6-4: Find P(X = 4)if Xhas a Poisson distribution such that 3P(X = 1) = P(X = 2).

2.6-5: Flaws in a certain type of drapery material appear on the average of one in 150 square
feet. If we assume a Poisson distribution, find the probability of at most one flaw appearing in
225 square feet.

2.6-10: The mean of a Poisson random variable X isu = 9.

ComputeP(u- 20 < X < u + 20).
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Discrete Distributions
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Lt S Rl
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