

Chapter 2: Discrete Distributions

Chapter 2: Discrete Distributions

- 2.1 Random Variables of the Discrete Type
- 2.2 Mathematical Expectation
- 2.3 Special Mathematical Expectations
- 2.4 The Binomial Distribution
- 2.5 The Negative Binomial Distribution
- 2.6 The Poisson Distribution

Book : PROBABILITY AND STATISTICAL INFERENCE ,Ninth Edition , Robert V. Hogg Elliot A. Tanis Dale L. Zimmerman

Distributions	probability mass function(pmf) P(X=x)	Value of r.v	Mean μ	Variance σ^2 Standard deviation $\sigma = \sqrt{Variance}$	Moment generating $M(t)$	R.V X
Discrete uniform $m > 0$	$\frac{1}{m}$	x = 1, 2,, m m: positive integer	$\frac{m+1}{2}$	$\frac{m^2-1}{12}$	$\frac{e^t(1-e^{tm})}{m(1-e^t)}$	Each value of the random variable is equally likely
Bernoulli 0	$p^x(1-p)^{1-x}$	<i>x</i> = 0,1	p	pq	$(q+pe^t)$	Experiment has only two outcomes
Binomial b(n, p)	$\binom{n}{x}p^x(1-p)^{n-x}$	x = 0,1,,n	np	npq	$(q+pe^t)^n$	X: is the number of successes in a random sample of size n
Hypergeometric	$\frac{\binom{N_1}{x}\binom{N_2}{n-x}}{\binom{N}{n}}$	$x \le n,$ $x \le N_1,$ $n - x \le N_2$	$n(\frac{N_1}{N})$	$n\left(\frac{N_1}{N}\right)\left(\frac{N_2}{N}\right)\left(\frac{N-n}{N-1}\right)$		$N = N_1 + N_2$ $N_1 > 0$, $N_2 > 0$ X: number of successes in the sample
Negative binomial $0 r = 1, 2, 3,$	$\binom{x-1}{r-1}p^r(1-p)^{x-r}$	$x = r, r + 1, \dots$	$\frac{r}{p}$	$\frac{rq}{p^2}$	$\frac{(pe^t)^r}{[1-qe^t]^r}$	X: denote the number of trials needed to observe the <i>rth</i> success
Geometric	$p(1-p)^{x-1}$	x = 1,2	$\frac{1}{p}$	$\frac{q}{p^2}$	$\frac{pe^t}{[1-qe^t]}$	X : number of the trial on which the first success occurs
Poisson	$\frac{\lambda^x e^{-\lambda}}{x!}$	x = 0,1,	λ	λ	$e^{\lambda(e^t-1)}$	X: number of events occurring within a fixed interval of time or space.

2.2 MATHEMATICAL EXPECTATION

2.2-2. Let the random variable X have the pmf

$$f(x) = \frac{(|x| + 1)^2}{9}, x = -1, 0, 1.$$

Compute E(X), $E(X^2)$, and $E(3X^2 - 2X + 4)$.

2.2-3. Let the random variable X be the number of days that a certain patient needs to be in the hospital. Suppose X has the pmf

$$f(x) = \frac{5-x}{10}$$
, $x = 1, 2, 3, 4$.

If the patient is to receive \$200 from an insurance company for each of the first two days in the hospital and \$100 for each day after the first two days, what is the <u>expected payment for the hospitalization?</u>

2.2-4. An insurance company sells an automobile policy with a deductible of one unit. Let X be the amount of the loss having pmf

$$f(x) = \begin{cases} 0.9 & , x = 0.\\ \frac{c}{x} & , x = 1,2,3,4,5,6. \end{cases}$$

where \mathbf{c} is a constant. Determine \mathbf{c} and the expected value of the amount the insurance company must pay.

2.3 SPECIAL MATHEMATICAL EXPECTATIONS

2.3-1. Find the mean and variance for the following discrete distributions:

(a)
$$f(x) = \frac{1}{5}$$
, $x = 5, 10, 15, 20, 25$.

(b)
$$f(x) = 1$$
, $x = 5$.

(c)
$$f(x) = \frac{4-x}{6}$$
, $x = 1, 2, 3$.

2.3-2. For each of the following distributions, find $\mu = E(X)$, E[X(X-1)], and $\sigma^2 = E[X(X-1)] + E(X) - \mu^2$:

(a)
$$f(x) = \frac{3!}{x!(3-x)!} \left(\frac{1}{4}\right)^x \left(\frac{3}{4}\right)^{3-x}, x = 0, 1, 2, 3.$$

(b)
$$f(x) = \frac{4!}{x!(4-x)!} \left(\frac{1}{2}\right)^4$$
, $x = 0, 1, 2, 3, 4$.

2.3-4. Let μ and σ^2 denote the mean and variance of the random variable X. Determine $E\left[\frac{X-\mu}{\sigma}\right]$ and $E\left\{\left[\frac{X-\mu}{\sigma}\right]^2\right\}$.

2.3-5. Consider an experiment that consists of selecting a card at random from an ordinary deck of cards. Let the random variable X equal the value of the selected card, where Ace=1, Jack=11, Queen=12, $and\ King=13$. Thus, the space of X is $S=\{1,2,3,\ldots,13\}$. If the experiment is performed in an unbiased manner, assign probabilities to these 13 outcomes and compute the mean μ of this probability distribution.

- **2.3-7.** Let X equal an integer selected at random from the first m positive integers, $\{1, 2, ..., m\}$. Find the value of m for which E(X) = Var(X). (See Zerger in the references.)
- **2.3-8.** Let X equal the larger outcome when a pair of fair four-sided dice is rolled. The pmf of X is

$$f(x) = \frac{2x-1}{16}$$
, $x = 1, 2, 3, 4$.

Find the mean, variance, and standard deviation of X.

2.3-11. If the moment-generating function of X is

$$M(t) = \frac{2}{5} e^{t} + \frac{1}{5} e^{2t} + \frac{2}{5} e^{3t},$$

find the mean, variance, and pmf of X.

2.3-19. Given a random permutation of the integers in the set $\{1, 2, 3, 4, 5\}$, let X equal the number of integers that are in their natural position. The moment-generating function of X is

$$M(t) = \frac{44}{120} + \frac{45}{120}e^{t} + \frac{20}{120}e^{2t} + \frac{10}{120}e^{3t} + \frac{1}{120}e^{5t}$$

(a) Find the mean and variance of X.

2.4 THE BINOMIAL DISTRIBUTION

- **2.4-1** An urn contains 7 red and 11 white balls. Draw one ball at random from the urn. Let X=1 if a red ball is drawn, and X=0 if a white ball is drawn. Give the pmf, mean, and variance of X=1
- **2.4-2** Suppose that in Exercise 2.4-1, X = 1 if a red ball is drawn and X = -1 if a white ball is drawn. Give the pmf, mean, and variance of X.
- **2.4-4** It is claimed that 15% of the ducks in a particular region have patent schistosome infection. Suppose that **seven ducks** are selected at random. Let X equal the number of ducks that are infected.
 - (a) Assuming independence, how is *X* distributed?
 - (b) Find (i) $P(X \ge 2)$, (ii) P(X = 1), and (iii) $P(X \le 3)$.
- **2.4-11** A random variable *X* has a binomial distribution, with **mean 6** and **variance 3**. **6**.

Find P(X = 4).

2.4-19 Define the pmf and give the values of μ , σ^2 , and σ when the moment-generating function of X is defined by

(a)
$$M(t) = \frac{1}{3} + (\frac{2}{3})e^t$$

(b)
$$M(t) = (0.25 + 0.75e^t)^{12}$$

2.5 THE NEGATIVE BINOMIAL DISTRIBUTION

- **2.5-2.** Show that 63/512 is the probability that the fifth head is observed on the tenth independent flip of a fair coin.
- **2.5-4.** Suppose an airport metal detector catches a person with metal 99% of the time. That is, it misses detecting a person with metal 1% of the time. Assume independence of people carrying metal. What is the probability that the first metal-carrying person missed (not detected) is among the first 50 metal-carrying persons scanned?

2.6 THE POISSON DISTRIBUTION

- 2.6-1: Let X have a Poisson distribution with a mean of 4. Find
- (a) $P(2 \le X \le 5)$.
- (b) $P(X \ge 3)$.
- (c) $P(X \le 3)$.
- **2.6-2:** Let X have a Poisson distribution with a variance of 3. Find P(X = 2).
- **2.6-4:** Find P(X = 4) if X has a Poisson distribution such that 3P(X = 1) = P(X = 2).
- **2.6-5:** Flaws in a certain type of drapery material appear on the average of one in 150 square feet. If we assume a Poisson distribution, find the probability of at most one flaw appearing in 225 square feet.
- **2.6-10**: The mean of a Poisson random variable X is $\mu = 9$.

Compute $P(\mu - 2\sigma < X < \mu + 2\sigma)$.

Discrete Distributions

Bernoulli
$$f(x) = p^x(1-p)^{1-x}, \quad x = 0,1$$
 $M(t) = 1-p+pe^t, \quad -\infty < t < \infty$ $\mu = p, \quad \sigma^2 = p(1-p)$

Binomial $f(x) = \frac{n!}{x!(n-x)!} p^x(1-p)^{n-x}, \quad x = 0,1,2,...,n$ $b(n,p)$ $0 $M(t) = (1-p+pe^t)^n, \quad -\infty < t < \infty$ $\mu = np, \quad \sigma^2 = np(1-p)$

Geometric $f(x) = (1-p)^{x-1}p, \quad x = 1,2,3,...$ $M(t) = \frac{pe^t}{1-(1-p)e^t}, \quad t < -\ln(1-p)$ $\mu = \frac{1}{p}, \quad \sigma^2 = \frac{1-p}{p^2}$

Hypergeometric $f(x) = \frac{\binom{N_1}{N}\binom{N_2}{n-x}}{\binom{N}{n}}, \quad x \le n, x \le N_1, n-x \le N_2$ $N = N_1 + N_2$ $\mu = n\binom{N_1}{N}, \quad \sigma^2 = n\binom{N_1}{N}\binom{N_2}{N}\binom{N-n}{N-1}$

Negative Binomial $f(x) = \binom{x-1}{t-1}p^t(1-p)^{x-t}, \quad x = r, r+1, r+2,...$ $0 $r = 1, 2, 3, ...$ $M(t) = \frac{(pe^t)^r}{[1-(1-p)e^t]^r}, \quad t < -\ln(1-p)$ $\mu = r(\frac{1}{p}), \quad \sigma^2 = \frac{r(1-p)}{p^2}$

Poisson $f(x) = \frac{\lambda^x e^{-\lambda}}{x!}, \quad x = 0, 1, 2, ...$ $M(t) = e^{\lambda(e^t-1)}, \quad -\infty < t < \infty$ $\mu = \lambda, \quad \sigma^2 = \lambda$

Uniform $m > 0$ $\mu = \frac{m+1}{2}, \quad \sigma^2 = \frac{m^2-1}{12}$$$

$$f(x) = \frac{(|x|+1)^2}{9}$$
, $x = -1, 0, 1$

$$|X| = \begin{cases} X & \text{if } X > 0 \\ -X & \text{if } X < 0 \end{cases}$$

$$f(x) = \begin{cases} \frac{(x+1)^2}{9} & x = 0 \end{cases}$$

$$\frac{(-x+1)^2}{9} & x = -1$$

$$\frac{x}{f(x) = \rho(x_{=x})} = \frac{4}{9} = \frac{1}{9} = \frac{1}{9}$$

• mean =
$$E[x] = \sum x p(x=x)$$

= $(-1 \times \frac{4}{9}) + (6 \times \frac{1}{9}) + (1 \times \frac{4}{9}) = 0$

•
$$E[x^2] = \sum x^2 p(x=x) = \frac{8}{9}$$

•
$$E[3x^2-2x+4] = 3E[x^2]-2E[x]+4$$

= $3(\frac{8}{9})-2(0)+4 = \frac{20}{3}=6.667$

$$f(x) = \frac{5-x}{10}$$
, $x = 1, 2, 3, 4$

Payment 200 400 500 600

Expected payment =
$$(200 \times \frac{4}{10}) + (400 \times \frac{3}{10}) + (500 \times \frac{2}{10}) + (600 \times \frac{1}{10})$$

= 360\$

$$f(x) = \begin{cases} 0.9 & X = 0 \\ \frac{c}{x} & X = 1,2,3,4,5,6 \end{cases}$$

$$\Sigma f \omega = 1$$

$$\circ \cdot 9 + C \left[1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \frac{1}{6} \right] = 1$$

$$\frac{49}{20}$$
 C = 1-0.9

$$=$$
) * $C = \frac{2}{49}$ = 0.040 \geq

*
$$E[x] = \sum_{x=0}^{6} x \ P(x) = \frac{12}{49} = 0.244$$

Expected Payment by Insurance Company:

*
$$E[payment] = (1 \cdot \frac{c}{2}) + (2 \cdot \frac{c}{3}) + (3 \cdot \frac{c}{4}) + (4 \cdot \frac{c}{5}) + (5 \cdot \frac{c}{6})$$

$$\frac{49}{20} C = 1 - 0.9$$
 => $C = \frac{2}{49}$ = 0.0408 = $\frac{71}{490} = 0.14489$ Unite

2.3-1 (a)
$$f(x) = \frac{1}{5}$$
, $\chi = 5, 10, 15, 20, 25$

mean =
$$E[x] = \sum x p(x)$$

= 15

$$E[x^2] = \sum_{x} p(x) = 275$$

$$6^{-2} = E[x^2] - (E[x])^2$$
= 50

$$mean = E[x] = \sum x p(x) = 5x1 = 5$$

$$E[x^2] = x^2 p(x) = 25 x 1 = 25$$

Variance:
$$6^2 = E(x^2) - (E(x))^2 = 25 - 5^2 = 6$$

$$f(x) = \frac{4-x}{6}, \quad x = 1,2,3$$

$$f(x) = \begin{cases} x & 1 & 2 & 3 \\ \frac{3}{6} & \frac{2}{6} & \frac{1}{6} \end{cases}$$

mean:
$$E(x) = \sum_{x} p(x) = \frac{10}{6} = \frac{5}{3}$$

$$E[x^2] = \sum x^2 p(x) = \frac{10}{3}$$

(a)
$$f(x) = \frac{3!}{x!(3-x)!} \left(\frac{1}{4}\right)^{x} \left(\frac{3}{4}\right)^{3-x}$$
; $\chi = 0, 1, 2, 3$ $\Rightarrow f(x) = {3 \choose x} \left(\frac{1}{4}\right)^{x} \left(\frac{3}{4}\right)^{-x}$

$$X! (3-x)! - (4) (4)$$
; X

$$E[x] = \sum x p(x) = 0.25$$

$$E[x^2] = 1.125 = \frac{9}{8}$$

$$=) f(x) = \begin{pmatrix} 3 \\ x \end{pmatrix} \begin{pmatrix} \frac{1}{4} \end{pmatrix}^{x} \begin{pmatrix} \frac{3}{4} \end{pmatrix}^{-x}$$

=)
$$E[x^2] = \sigma^2 + (F(x))^2 = \frac{9}{2}$$

$$E\left[\frac{x}{x-h}\right]^{2} = E\left[\frac{x}{x} - \frac{h}{h}\right]^{2} = \frac{1}{2} E\left[\frac{x}{x}\right]^{2} - \frac{h}{h} = \frac{h}{h^{2}} - \frac{h}{h^{2}}$$

$$= \frac{1}{6} \left[\frac{x}{x}\right]^{2} - \frac{1}{6} \left[\frac{x}{x}\right] + \frac{h^{2}}{6} \left[\frac{x}{x}\right] + \frac{h^{2}}{6} \left[\frac{x}{x}\right]^{2} - \frac{h^{2}}{6} \left[\frac{x}{x}\right]$$

(2.37)

X is an integer selected at random from the first m positive integer.

* Discrete Uniform distribution

$$\left\{\left[x\right]: \frac{1+m}{2} \quad \text{Vor}(x) = \frac{m^2-1}{12}\right\}$$

=)
$$E(x) = Var(x)$$
 =) $\frac{1+m}{2} = \frac{m^2-1}{12}$

$$=) 12 m + 12 = 2m^2 - 2$$
$$2m^2 - 12 m - 14 = 0$$

Since ma represent the number of positive integer

$$f(x) = \frac{2x-1}{16}$$
, $x=1, 2, 3, 4$

H. w Plet

mean:
$$E[x] = \sum x p(x)$$

$$E(x^2) = \sum x^2 p(x)$$

Variance:
$$\sigma^2 : E[x^2] - (E[x])^2$$

(2.3.11)
$$M(t) = \frac{2}{5}e^{t} + \frac{1}{5}e^{2t} + \frac{2}{5}e^{3t}$$

$$M(t=0) = \frac{2}{5}e^{t} + \frac{2}{5}e^{2t} + \frac{2\times 3}{5}e^{3t} = 2 \implies E[X] = 2$$

$$M''[H] = \frac{2}{5} e^{+} + \frac{2x^{2}}{5} e^{2+} + \frac{6x^{3}}{5} e^{3+} \Big|_{t=0} = \frac{24}{5} = \frac{24}{5}$$

$$V\omega(x) = E(x^2) - (E(x))^2$$

= $\frac{24}{5} - (2)^2 = \frac{4}{5} = 0.8$

$$2.3.19$$

$$M(t) = \frac{44}{120} + \frac{45}{120} e^{t} + \frac{20}{120} e^{2t} + \frac{10}{120} e^{3t} + \frac{1}{120} e^{5t}$$

$$V_{\infty}(x) = M'(t=0) - [M'(t=0)]^{2}$$

$$= 2 - 1^{2}$$

X=1 if a red ball drawn

The Experiment has only two outcoms (

$$X=1 \Rightarrow R = Successe \rightarrow P = \frac{7}{18}$$

 $X=0 \Rightarrow \omega = falur$

(Pmf)

$$p(x=x) = \begin{cases} p^{x}(1-p)^{1-x} & x=0,1 \\ 0 & 0 & \omega \end{cases}$$

Or
$$P(x=x) = \begin{cases} \frac{1}{18} & \text{if } x=8 \\ \frac{11}{18} & \text{if } x=0 \end{cases}$$

mean:
$$\xi(x) = P = \frac{7}{18}$$

Variance:

$$V\omega(v) = P9 = \frac{7}{18} \cdot \frac{11}{18} = \frac{27}{324} = 6.2376$$

$$\chi = 1$$
 if ball R
 $\chi = -1$ if ball W

$$P(X=x) = \begin{cases} \frac{7}{18} & X=1\\ \frac{11}{18} & X=-1 \end{cases}$$

mean:
$$E[x] = \int x \ p(x)$$

 $= \frac{7}{18} - \frac{11}{18} = -\frac{2}{9}$
 $E[x^2] = \int x^2 \ p(x)$
 $= \frac{7}{18} + \frac{11}{18} = 1$

Vajance:

$$V_{\omega}(x) = E(x^{2}) - (E[x])^{2}$$

= $1 - (-\frac{2}{9})^{2} = \frac{77}{81} = 0.95$

$$P(X=x) = \binom{n}{x} p^{x} q^{n-x}, X=0,1,--n$$

$$P(X=x)=\binom{n}{x}p^{x}q^{n-x}; X=0,1,-n$$

mean:
$$E[x] = np = 6$$

Variance:
$$Var(x) = npq = 3.6$$

 $6q = 3.6$
 $q = 0.6$

$$\begin{cases} n\rho = 6 \\ n_{6}.4) = 6 \\ n = 15 \end{cases}$$

2.4-19

$$p = \frac{2}{3}$$

Pmf:
$$P(x=x) = \left[\left(\frac{2}{3} \right) \left(1 - \frac{2}{3} \right)^{1-x} ; x=0,1 \right]$$

$$mean = p = \frac{2}{3}$$

Variance:
$$pq = \frac{2}{3} \cdot \frac{1}{3} = \frac{2}{9}$$

$$P(X=x) = {12 \choose x} 0.75^{x} (0.25)^{12-x}; x=0,1,-12$$

2.5-2 "Negative Binomial distribution"

$$P(X=x) = {x-1 \choose r-1} p^r q^{x-r}$$

P = Probability of Heads = 1

X = * of trial con which the rth Success Occurs. => X = \$10

r = 5

$$P(\chi = 7) = {\begin{pmatrix} 10-1 \\ 5-1 \end{pmatrix}} {\begin{pmatrix} \frac{1}{2} \end{pmatrix}}^5 {\begin{pmatrix} \frac{1}{2} \end{pmatrix}} = \frac{63}{512} \quad \approx$$

2.5-4

"Geometric distribution"

X = X of trial on which the first success occurs. (first miss occurs)

P = 0.01 Probability of missing a metal-Carrying person

$$P(X \le 50) = \sum_{x=1}^{50} P_{y}^{x-1} = 0.39499 \qquad P(I-P)^{x-1}$$

 ≈ 0.395
 $= 39.5\%$

2.6-1

$$X \sim Poisson(\lambda = 4)$$

 $P(2 \le Y \le 5) = \sum_{x=1}^{3} (\frac{4^x e^{-4}}{x!}) = 0.69355$

 $P(x \ge 3) = 1 - P(x < 2) = 0.76189$

$$P(X \le 3) = \sum_{x=0}^{3} \left(\frac{4^x e^{-4}}{x!} \right) = 0.43347$$

[2.6-2]

$$P(X=2) = \frac{3^2 e^{-3}}{2!} =$$

$$\begin{cases}
\widehat{f}(x) = \rho(X=x) \\
= \frac{\lambda^{x}e^{-\lambda}}{x!} \quad \text{if } x=0,1,\dots
\end{cases}$$

$$3p(x=1) = p(x=2)$$
 ; $x \sim poisson(\lambda)$

$$3 \frac{x^{2}e^{-x}}{1!} = \frac{x^{2}e^{-x}}{2!}$$

$$3 = \frac{\lambda}{2}$$

Find:
$$p(y=4) = \frac{6^4 e^{-6}}{4!} = 0.13385$$

(2.6-5)

$$P(X \le 1) = P(X = 0) + P(X = 1)$$

$$= \sum_{x=0}^{1} \frac{(\lambda^{*})^{x}}{x!} e^{-\lambda^{*}}$$

$$= \sum_{x=0}^{1} \frac{(1.5)^{x}}{x!} e^{-1.5}$$

$$= 0.5578$$

$$[2.6-10]$$
 $\times \sim Poisson(\lambda)$

mean =
$$\gamma = q = \lambda$$
 Variance = $\sigma^2 = \lambda$

=)
$$p(9-2\sqrt{9} < x < 9+2\sqrt{9})$$

$$\Rightarrow$$
 $\rho(3 < x < 15)$

$$\Rightarrow \sum_{x=4}^{14} \frac{9^x e^{-9}}{x!} = 0.9373$$

$$P(X=x) = \frac{\lambda^x e^{-\lambda}}{X!}; X=0,1,2,...$$