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Sample space, sample points, events

« Sample space Q2 is the set of all possible sample points ® € Q
— Example 0. Tossing a coin: Q2 = {H,T}
— Example 1. Casting a die: Q = {1,2,3,4,5,6}
— Example 2. Number of customers in a queue: Q2 = {0,1,2,...}
— Example 3. Call holding time (e.g. in minutes): Q= {x € N | x>0}
« Events 4,B,C,... Q) are measurable subsets of the sample space 2
— Example 1. “Even numbers of a die”: 4 = {2,4,6}
— Example 2. “No customers in a queue” 4 = {0}
— Example 3. “Call holding time greater than 3.0 (min)”: 4 = {x € R | x> 3.0}
« Denote by / the set of allevents 4 €
— Sure event: The sample space Q) € J itself
— Impossible event: The empty set O € 7




Combination of events

Union “A or B”: AUB={o e Q|wedormw € B}
Intersection “A and B”: ANB={o e Q|w e Aand ® € B}
Complement “not A”: A={oe Q|o ¢ 4}
Events A and B are disjoint if

— ANB=Y

A set of events {By, B,, ...} is a partition of event 4 if
- () BnB,=CDforalli#j
— (i), B,=A4




Probability

Probability of event 4 is denoted by P(4), P(A4) € [0,1]

— Probability measure P is thus
a real-valued set function defined on the set of events J, P:  — [0,1]

Properties:
- () 0<PUA)<L1
- (i) P(©@)=0
- (@iii) P(Q)=1
— (iv) P(A)=1-PA)
- (vv PAVUB)=P()+ P(B)—-P(ANB) B
- (i) AnB=J= P(4vB)=P(4)+ P(B)
— (vii) {B,} is a partition of 4 = P(4) =2, P(B,)
— (viii) A< B = P(A) <P(B)
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Conditional probability

Assume that P(B) > 0

Definition: The conditional probability of event A
given that event B occurred is defined as

A
P(41B)="5 57

It follows that

P(ANB)= P(B)P(A|B) = P(A)P(B| A)




Theorem of total probability

Let {B.} be a partition of the sample space 2
It follows that {4 M B;} is a partition of event 4. Thus (by slide 5)

(vii)
P(4) = 2;P(ANB;)
Assume further that P(B;) > 0 for all i. Then (by slide 6)

P(A)=2.,P(B;)P(A4| B;)

This is the theorem of total probability




Bayes’ theorem

Let {B.} be a partition of the sample space 2
Assume that P(4) > 0 and P(B;) > 0 for all i. Then (by slide 6)

P(ANB;)  P(B;)P(A|B;)

PEAD="p = P

Furthermore, by the theorem of total probability (slide 7), we get

P(B;)P(A|B;)
7P(B;)P(AB))

P(B;| 4)=;

This is Bayes’ theorem

— Probabilities P(B;) are called a priori probabilities of events B,

— Probabilities P(B;| A) are called a posteriori probabilities of events B;
(given that the event 4 occured)




Statistical independence of events

Definition: Events 4 and B are independent if

P(ANB)= P(A)P(B)

It follows that

P(ANB) _ P(A)P(B)

PUAIBY=—pm =@ =W
Correspondingly:
P(B | A) = P(AnB)  P(A)P(B) — P(B)

P(4)  P(4)




Random variables

Definition: Real-valued random variable X is a real-valued and
measurable function defined on the sample space Q2, X: 2 > R

— Each sample point ® € (2 is associated with a real number X(®)
Measurability means that all sets of type

{(X<x}:={loeQ|X(w)<x}cQ

belong to the set of events J, that is

{(X<x} el

The probability of such an event is denoted by P{X < x}
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Example

A coin is tossed three times
Sample space:

Q:{(a)l,a)z,a)3) | ; E{H,T},i=1,2,3}

Let X be the random variable that tells the total number of tails
in these three experiments:

Q)

HHH

HHT

HTH

THH

HTT

THT

TTH

TTT

X(o)

2
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Indicators of events

Let A € / be an arbitrary event

Definition: The indicator of event A is a random variable defined as
follows:

Clearly:
P{l =1} = P(4)
P{l,=0}=P(4°)=1-P(4)
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Cumulative distribution function

Definition: The cumulative distribution function (cdf) of a random
variable X is a function F'y: ‘R — [0,1] defined as follows:

Fy(x)=P{X <x}

Cdf determines the distribution of the random variable,

— that is: the probabilities P{X € B}, where B c R

Properties:
- (i) Fyisnon-decreasing

— (ii) Fyis continuous from the right F(x)
— (i) Fy(-0)=0

— (V) Fy(o)=1 « ]

and {X € B} €7
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Statistical independence of random variables

Definition: Random variables X and Y are independent if
for all x and y

P{X <x,Y<y}=P{X <x}P{Y <y}

Definition: Random variables X;,..., X, are totally independent if
for all i and x;

P{Xl le,...,Xn an} ZP{XI le}"'P{Xn an}
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Maximum and minimum of independent random variables

Let the random variables X,..., X, be totally independent
Denote: XM := max{X{,..., X, }. Then

PX"¥ <x}=P{X{<x,...,X, <x}
= P{X|<x}---P{X, <x}
Denote: X™" := min{X,..., X, }. Then

PX™ S b =P{X| >x,.... X, >x}
= P{X|>x}---P{X,,>x}
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Discrete random variables

Definition: Set A — R is called discrete if it is
— finite, 4 = {x,,..., x,}, or
— countably infinite, 4 = {x, x,,...}
Definition: Random variable X is discrete if
there is a discrete set S,y — R such that

P{X = SX} =1
It follows that
- P{X=x}=0 forallx € Sy
- P{X=x}=0 forallx ¢ Sy
The set Sy is called the value set
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Point probabilities

Let X be a discrete random variable
The distribution of X is determined by the point probabilities p,,

pl-::P{szi}, xl-eSX

Definition: The probability mass function (pmf) of X is a function
Py- R — [0,1] defined as follows:

px(x)=P{X =x}= {
Cdf is in this case a step function:

Fy(x)=P{X<x}= 2 p

[:X; <X

pi» X=x;€8y
0, X€SX
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Example

[ | [ C—— |
L - ——+ S
X; Xy X3Xy X; Xy X3Xy4
probability mass function (pmf) cumulative distribution function (cdf)

Sy = %1, X, X3, X4}
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Independence of discrete random variables

Discrete random variables X and Y are independent if and only if
forall x; € Sy and y; € Sy

PX =x;.Y =y;} = P{X =x;}P{Y =y}
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Expectation

« Definition: The expectation (mean value) of X is defined by

px =EX]= 2LPIX =xp-x= 2 px(¥)x=2px

XESX XESX

— Note 1: The expectation exists only if 2; p/|x;| <

— Note 2: If 2, p, x; = 0, then we may denote E[X] = o

* Properties:
— (i) c e R = E[cX] =cE[X]
— (i) E[X+ Y] = E[X] + E[Y]
— (i) X and Yindependent = E[XY] = E[X]E[Y]
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Variance

Definition: The variance of X is defined by

c% = D*[X]:= Var[X]:= E[(X — E[X])*]

Useful formula (prove!):

D?[X]=E[X?]-E[XT]

Properties:
— () ceR=DeX]=c*D?[X]
— (i) Xand Yindependent = D’[X + Y] = D?[X] + D?[Y]
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Covariance

Definition: The covariance between X and Y is defined by

o3y =Cov[X,Y]:= E[(X - E[LX])(Y - E[Y])]

Useful formula (prove!):

Cov[X,Y]= E[XY]- E[X]E[Y]

Properties:
- (i) Cov[X,X]= Var[X]
— (@) Cov[X,Y] = Cov[l,X]
— (i) Cov[X+Y,Z] = Cov[X,Z] + Cov[Y,Z]
— (iv)Xand Yindependent = Cov[X,Y] =0
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Other distribution related parameters

- Definition: The standard deviation of X is defined by

oy =D[X]:=+D*[X]=+Var[X]

- Definition: The coefficient of variation of X is defined by

DI X
ex = CIXT= 0

« Definition: The kth moment, k=1,2,..., of X is defined by

uy) = ELX"]
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Average of IID random variables

Let X;,..., X, be independent and identically distributed (lID)
with mean u and variance o2
Denote the average (sample mean) as follows:

- n
Xy, ::%ZXZ'
i=l1

Then (prove!)

5 2
D*[X,]=
DIX,]= ¢

N
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Law of large numbers (LLN)

Let X;,..., X, be independent and identically distributed (lID)
with mean p and variance o2
Weak law of large numbers: for all € > (

P{X,~ul>e} -0

Strong law of large numbers: with probability 1

X, > u
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Bernoulli distribution

X ~Bernoulli(p), pe(0,1)

— describes a simple random experiment with two possible outcomes:
success (1) and failure (0); cf. coin tossing

— success with probability p (and failure with probability 1 — p)
Value set: 5, = {0,1}
Point probabilities:

P{X=0}=1-p, P{X=1}=p

Mean value: E[X]=(1 -p)0+p-1=p
Second moment: E[X?] = (1 — p)-0? + p-12=p
Variance: D’[X] = E[X?] - E[X]> =p — p* = p(1 - p)
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Binomial distribution

X ~Bin(n, p), ne{l,2,...}, pe(0,])

— number of successes in an independent series of simple random
experiments (of Bernoulli type); X = X, + ... + X (with X ~ Bernoulli(p))

— n = total number of experiments

_ . . . . ni_ n
— p = probability of success in any single experiment (l )— A(n—)!
Value set: S, = {0,1,...,n}

. . n'=n-(n—1)---2-1
Point probabilities:

Px =iy =(!)p' - p)"
Mean value: E[X] = E[X|] + ... + E[X | =np
Variance: D?[X] = D?[X{] + ... + D’[X,] = np(1 — p) (independence!)
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Geometric distribution

X ~Geom(p), pe(0.])

— number of successes until the first failure in an independent series of simple
random experiments (of Bernoulli type)

— p = probability of success in any single experiment
Value set: S,y = {0,1,...}
Point probabilities:

P{X =i}=p'(1-p)

Mean value: E[X] =2, ip'(1 — p) = p/(1 - p)
Second moment: E[X?] =Y, i?p/(1 — p) = 2(p/(1 — p))*> + p/(1 - p)
Variance: D[ X] = E[X?] — E[X]? = p/(1 — p)?
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Memoryless property of geometric distribution

Geometric distribution has so called memoryless property:
forallij € {0,1,...}

P{X>i+j|X>il=P{X>}}

Prove!
— Tip: Prove first that P{X > i} = p
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Minimum of geometric random variables

« LetX; ~ Geom(p,) and X, ~ Geom(p,) be independent. Then
XM = min{X}, X,} ~ Geom(p; p;)

and

. o
P{X™IN _ xy o TP o]0
{ i} — i e{l,2}

* Provel
— Tip: See slide 15
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Poisson distribution

X ~Poisson(a), a>0

— limit of binomial distribution as # — o0 and p — 0 in such a way that np — a
Value set: S, = {0,1,...}
Point probabilities:

P{X =i} =9 ¢

Mean value: E[X] =a
Second moment: E[X(X —-1)] = a? = E[X?*] =d? +a
Variance: D?[X] = E[X?] - E[X]?* = a
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Example

Assume that

— 200 subscribers are connected to a local exchange

— each subscriber’s characteristic traffic is 0.01 erlang
— subscribers behave independently

Then the number of active calls X ~ Bin(200,0.01)

Corresponding Poisson-approximation X ~ Poisson(2.0)
Point probabilities:

0 1 2 3 4 5
Bin(200,0.01) | .1326 | .2679 | .2693 | .1795 | .0893 | .0354
Poisson(2.0) | .1353 | .2701 | .2701 | .1804 | .0902 | .0361
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Properties

'&) Sum: Let X; ~ Poisson(a;) and X, ~ Poisson(a,) be independent.
en

X1+ X, ~Poisson(a; +ay)

(i) Random sample: Let X ~ Poisson(a) denote the number of
elements in a set, and Y denote the size of a random sample of this set
(each element taken independently with probability p). Then

Y ~ Poisson( pa)

(iii) Random sorting: Let X and Y be as in (ii),and Z=X—-Y. Then
Y and Z are independent (given that X is unknown) and

Z ~Poisson((1- p)a)
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Continuous random variables

Definition: Random variable X is continuous if
there is an integrable function fy: R — R such that for all x € R

Fy(x)=P{X<x}= [fx(y)dy

—00

The function fy is called the probability density function (pdf)
— The set Sy, where f;,> 0, is called the value set
Properties:
- (i) P{X=x}=0 forallx e R
— (i) Pla<X<b}=P{a<X<b}=]bFx) dx
— (i) P{X € A} = |, filx) dx
— (i) PiX e Ry =2 fx) dx = ISX filx)de=1 .-




4. Basic probability theory

Example
[ /) [ Fx) |
| | | * > | | * >
xll xlz x|3 xll X X3
probability density function (pdf) cumulative distribution function (cdf)
SX: [xl, X3]
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Expectation and other distribution related parameters

- Definition: The expectation (mean value) of X is defined by
o0
px =E[X]= [fx(x)xdx
—00

— Note 1: The expectation exists only if f_ooc’ofX(x)|x\ dx < oo

— Note 2: If f_oooofx(x)x = o, then we may denote E[X] =
— The expectation has the same properties as in the discrete case
(see slide 21)
« The other distribution parameters (variance, covariance,...) are defined
just as in the discrete case

— These parameters have the same properties as in the discrete case
(see slides 22-24)
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Uniform distribution

X ~U(a,b), a<b
— continuous counterpart of “casting a die”

Value set: Sy = (a,b)
Probability density function (pdf):

1
Sy (x)= b_ g

Cumulative distribution function (cdf):

Fy(x)=P{X <x}= ﬁ, x €(a,b)
Mean value: E[X] = |, x/(b — a) dx = (a + b)/2
Second moment; E[X?] = Iab x2/(b — a) dx = (a* + ab + b*)/3
Variance: D?[X] = E[X?] — E[X]? = (b — a)¥/12

, x€(a,b)
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Exponential distribution

X ~Exp(4), 4>0

— continuous counterpart of geometric distribution (“failure” prob. ~ Adf)
Value set: Sy = (0,0)
Probability density function (pdf):

fr(x)=4e™, x>0
Cumulative distribution function (cdf):
F,(x)=P{X<x}=1-¢™, x>0
Mean value: E[X] = IOOO Ax exp(—Ax) dx = 1/\

Second moment: E[X?] = fooo Ax2 exp(—ix) dx = 2/A2

Variance: D*[X] = E[X?] — E[X]? = 1/\? 1




Memoryless property of exponential distribution

« Exponential distribution has so called memoryless property:
for all x,y € (0,00)

PX>x+y| X >x}=P{X >y}

— Prove!
« Tip: Prove first that P{X > x} = e™
« Application:
— Assume that the call holding time is exponentially distributed with mean /4
(min).

— Consider a call that has already lasted for x minutes.
Due to memoryless property,
this gives no information about the length of the remaining holding time:

it is distributed as the original holding time and, on average, lasts still /
minutes!
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Minimum of exponential random variables

« Let X ~ Exp(4,) and X, ~ Exp(4,) be independent. Then
Xmm = IIliIl{Xl,Xz} = EXp(ﬂ,l + 12)
and

A
2’1 +ﬂ,2 ’

PLY™N =y = ie {12}

* Provel
— Tip: See slide 15
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Standard normal (Gaussian) distribution

X ~N(0,1)

— limit of the “normalized” sum of IID r.v.s with mean 0 and variance 1 (cf.
slide 48)

Value set: S = (—0,0)
Probability density function (pdf):

fr(x)=p(x)=—Le
Cumulative distribution function (cdf):

Fy(x)=P{X <x}=®(x)=[_o(y)dy
Mean value: E[X] =0 (symmetric pdf)
Variance: D?[X] = 1

_ 1,2
> X
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Normal (Gaussian) distribution

X~N(,u,0'2), ueR, o>0

— if (X —p)/o ~N(0,1)
Value set: S = (—0,)
Probability density function (pdf):

_ _ 1 X—p
[ () =F,' ()= L)
Cumulative distribution function (cdf):

Fy(x)=P{X <x}= pr—ﬂ < x—ﬂ}: q)(ﬂ]

\ & o o
Mean value: E[X] = u + cE[(X — n)/o] = u (symmetric pdf around L)
Variance: D?[X] = 62D?[(X — p)/c] = o2
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Properties of the normal distribution

+ (i) Linear transformation: Let X ~ N(z, ¢%) and ., € R. Then
Y=aX+f ~ N(a,u+,6’,a20'2)

* (i) Sum: Let X| ~ N(z4, 012) and X, ~ N(u,, 022) be independent.
Then

2, 2
X1+ X ~N(uy + pp,01 +03)

 (iif) Sample mean: Let X, ~ N(y, o%), i = 1,...n, be independent and
identically distributed (lID). Then

n
Ve 2
X, =13 X, ~N(u, L o?)
=1
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Central limit theorem (CLT)

Let X;,..., X, be independent and identically distributed (lID)
with mean p and variance o2 (and the third moment exists)
Central limit theorem:
0 - 1.d.
X, — N(O,1
O_/\/;( n 1) —>N(0,1)

It follows that

v 2
Xy = N(,U,%O' )
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Other random variables

* |n addition to discret

e and continuous random variables,

there are so called mixed random variables

— containing some d
« Example:

iscrete as well as continuous portions

— The customer waiting time W in an M/M/1 queue has an atom at zero
(P{W =0} =1 - p>0) but otherwise the distribution is continuous

Fpx)

l-p
0

A
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