

4. Basic probability theory

Contents

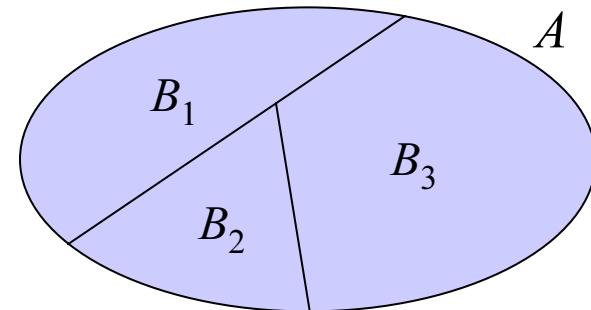
- Basic concepts
- Discrete random variables
- Discrete distributions (nbr distributions)
- Continuous random variables
- Continuous distributions (time distributions)
- Other random variables

Sample space, sample points, events

- **Sample space** Ω is the set of all possible **sample points** $\omega \in \Omega$
 - **Example 0.** Tossing a coin: $\Omega = \{H, T\}$
 - **Example 1.** Casting a die: $\Omega = \{1, 2, 3, 4, 5, 6\}$
 - **Example 2.** Number of customers in a queue: $\Omega = \{0, 1, 2, \dots\}$
 - **Example 3.** Call holding time (e.g. in minutes): $\Omega = \{x \in \mathbb{R} \mid x > 0\}$
- **Events** $A, B, C, \dots \subset \Omega$ are measurable subsets of the sample space Ω
 - **Example 1.** “Even numbers of a die”: $A = \{2, 4, 6\}$
 - **Example 2.** “No customers in a queue”: $A = \{0\}$
 - **Example 3.** “Call holding time greater than 3.0 (min)”: $A = \{x \in \mathbb{R} \mid x > 3.0\}$
- Denote by \mathcal{F} the set of all events $A \in \mathcal{F}$
 - **Sure event:** The sample space $\Omega \in \mathcal{F}$ itself
 - **Impossible event:** The empty set $\emptyset \in \mathcal{F}$

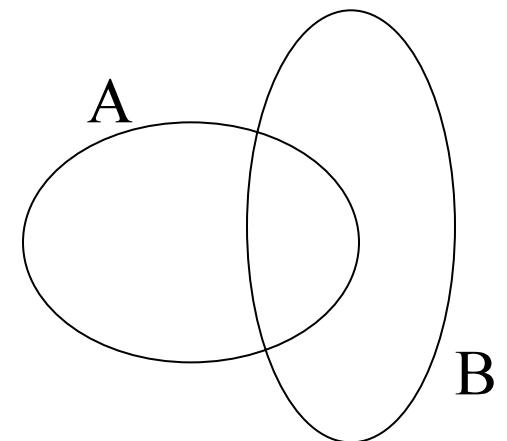
Combination of events

- **Union** “A or B”: $A \cup B = \{\omega \in \Omega \mid \omega \in A \text{ or } \omega \in B\}$
- **Intersection** “A and B”: $A \cap B = \{\omega \in \Omega \mid \omega \in A \text{ and } \omega \in B\}$
- **Complement** “not A”: $A^c = \{\omega \in \Omega \mid \omega \notin A\}$
- Events A and B are **disjoint** if
 - $A \cap B = \emptyset$
- A set of events $\{B_1, B_2, \dots\}$ is a **partition** of event A if
 - (i) $B_i \cap B_j = \emptyset$ for all $i \neq j$
 - (ii) $\cup_i B_i = A$



Probability

- **Probability** of event A is denoted by $P(A)$, $P(A) \in [0,1]$
 - Probability measure P is thus a real-valued set function defined on the set of events \mathcal{I} , $P: \mathcal{I} \rightarrow [0,1]$
- **Properties:**
 - (i) $0 \leq P(A) \leq 1$
 - (ii) $P(\emptyset) = 0$
 - (iii) $P(\Omega) = 1$
 - (iv) $P(A^c) = 1 - P(A)$
 - (v) $P(A \cup B) = P(A) + P(B) - P(A \cap B)$
 - (vi) $A \cap B = \emptyset \Rightarrow P(A \cup B) = P(A) + P(B)$
 - (vii) $\{B_i\}$ is a partition of $A \Rightarrow P(A) = \sum_i P(B_i)$
 - (viii) $A \subset B \Rightarrow P(A) \leq P(B)$



Conditional probability

- Assume that $P(B) > 0$
- **Definition:** The **conditional probability** of event A **given** that event B occurred is defined as

$$P(A | B) = \frac{P(A \cap B)}{P(B)}$$

- It follows that

$$P(A \cap B) = P(B)P(A | B) = P(A)P(B | A)$$

Theorem of total probability

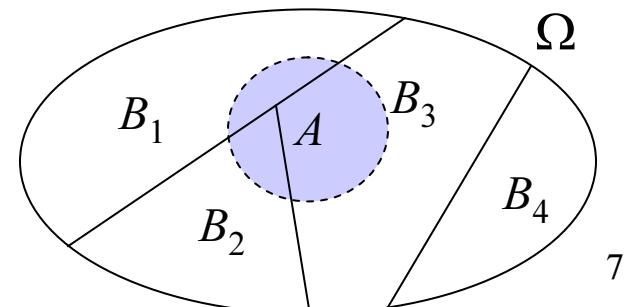
- Let $\{B_i\}$ be a partition of the sample space Ω
- It follows that $\{A \cap B_i\}$ is a partition of event A . Thus (by slide 5)

$$P(A) = \sum_i P(A \cap B_i) \quad (vii)$$

- Assume further that $P(B_i) > 0$ for all i . Then (by slide 6)

$$P(A) = \sum_i P(B_i)P(A | B_i)$$

- This is the **theorem of total probability**



Bayes' theorem

- Let $\{B_i\}$ be a partition of the sample space Ω
- Assume that $P(A) > 0$ and $P(B_i) > 0$ for all i . Then (by slide 6)

$$P(B_i | A) = \frac{P(A \cap B_i)}{P(A)} = \frac{P(B_i)P(A|B_i)}{P(A)}$$

- Furthermore, by the theorem of total probability (slide 7), we get

$$P(B_i | A) = \frac{P(B_i)P(A|B_i)}{\sum_j P(B_j)P(A|B_j)}$$

- This is **Bayes' theorem**
 - Probabilities $P(B_i)$ are called *a priori* probabilities of events B_i
 - Probabilities $P(B_i | A)$ are called *a posteriori* probabilities of events B_i (given that the event A occurred)

Statistical independence of events

- **Definition:** Events A and B are **independent** if

$$P(A \cap B) = P(A)P(B)$$

- It follows that

$$P(A | B) = \frac{P(A \cap B)}{P(B)} = \frac{P(A)P(B)}{P(B)} = P(A)$$

- Correspondingly:

$$P(B | A) = \frac{P(A \cap B)}{P(A)} = \frac{P(A)P(B)}{P(A)} = P(B)$$

Random variables

- **Definition:** Real-valued **random variable** X is a real-valued and measurable function defined on the sample space Ω , $X: \Omega \rightarrow \mathbb{R}$
 - Each sample point $\omega \in \Omega$ is associated with a real number $X(\omega)$
- **Measurability** means that all sets of type

$$\{X \leq x\} := \{\omega \in \Omega \mid X(\omega) \leq x\} \subset \Omega$$

belong to the set of events \mathcal{F} , that is

$$\{X \leq x\} \in \mathcal{F}$$

- The probability of such an event is denoted by $P\{X \leq x\}$

Example

- A coin is tossed three times
- Sample space:

$$\Omega = \{(\omega_1, \omega_2, \omega_3) \mid \omega_i \in \{H, T\}, i=1,2,3\}$$

- Let X be the random variable that tells the total number of tails in these three experiments:

ω	HHH	HHT	HTH	THH	HTT	THT	TTH	TTT
$X(\omega)$	0	1	1	1	2	2	2	3

Indicators of events

- Let $A \in \mathcal{F}$ be an arbitrary event
- **Definition:** The **indicator** of event A is a random variable defined as follows:

$$1_A(\omega) = \begin{cases} 1, & \omega \in A \\ 0, & \omega \notin A \end{cases}$$

- Clearly:

$$P\{1_A = 1\} = P(A)$$

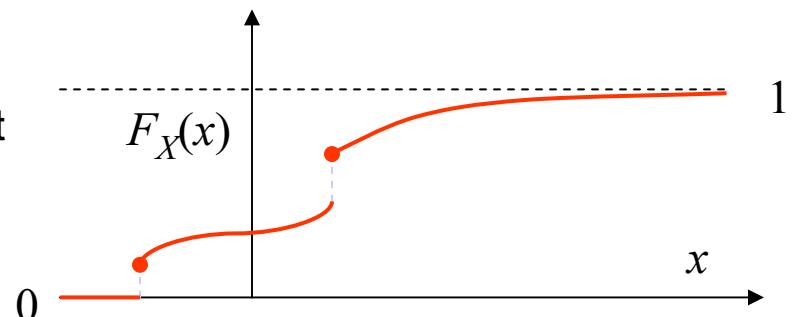
$$P\{1_A = 0\} = P(A^c) = 1 - P(A)$$

Cumulative distribution function

- **Definition:** The **cumulative distribution function** (cdf) of a random variable X is a function $F_X: \mathbb{R} \rightarrow [0,1]$ defined as follows:

$$F_X(x) = P\{X \leq x\}$$

- Cdf determines the **distribution** of the random variable,
 - that is: the probabilities $P\{X \in B\}$, where $B \subset \mathbb{R}$ and $\{X \in B\} \in \mathcal{F}$
- **Properties:**
 - (i) F_X is non-decreasing
 - (ii) F_X is continuous from the right
 - (iii) $F_X(-\infty) = 0$
 - (iv) $F_X(\infty) = 1$



Statistical independence of random variables

- **Definition:** Random variables X and Y are **independent** if for all x and y

$$P\{X \leq x, Y \leq y\} = P\{X \leq x\}P\{Y \leq y\}$$

- **Definition:** Random variables X_1, \dots, X_n are **totally independent** if for all i and x_i

$$P\{X_1 \leq x_1, \dots, X_n \leq x_n\} = P\{X_1 \leq x_1\} \cdots P\{X_n \leq x_n\}$$

Maximum and minimum of independent random variables

- Let the random variables X_1, \dots, X_n be **totally independent**
- Denote: $X^{\max} := \max\{X_1, \dots, X_n\}$. Then

$$\begin{aligned} P\{X^{\max} \leq x\} &= P\{X_1 \leq x, \dots, X_n \leq x\} \\ &= P\{X_1 \leq x\} \cdots P\{X_n \leq x\} \end{aligned}$$

- Denote: $X^{\min} := \min\{X_1, \dots, X_n\}$. Then

$$\begin{aligned} P\{X^{\min} > x\} &= P\{X_1 > x, \dots, X_n > x\} \\ &= P\{X_1 > x\} \cdots P\{X_n > x\} \end{aligned}$$

Contents

- Basic concepts
- Discrete random variables
- Discrete distributions (nbr distributions)
- Continuous random variables
- Continuous distributions (time distributions)
- Other random variables

Discrete random variables

- **Definition:** Set $A \subset \mathbb{R}$ is called **discrete** if it is
 - finite, $A = \{x_1, \dots, x_n\}$, or
 - countably infinite, $A = \{x_1, x_2, \dots\}$
- **Definition:** Random variable X is **discrete** if there is a discrete set $S_X \subset \mathbb{R}$ such that

$$P\{X \in S_X\} = 1$$

- It follows that
 - $P\{X = x\} \geq 0$ for all $x \in S_X$
 - $P\{X = x\} = 0$ for all $x \notin S_X$
- The set S_X is called the **value set**

Point probabilities

- Let X be a discrete random variable
- The distribution of X is determined by the **point probabilities** p_i ,

$$p_i := P\{X = x_i\}, \quad x_i \in S_X$$

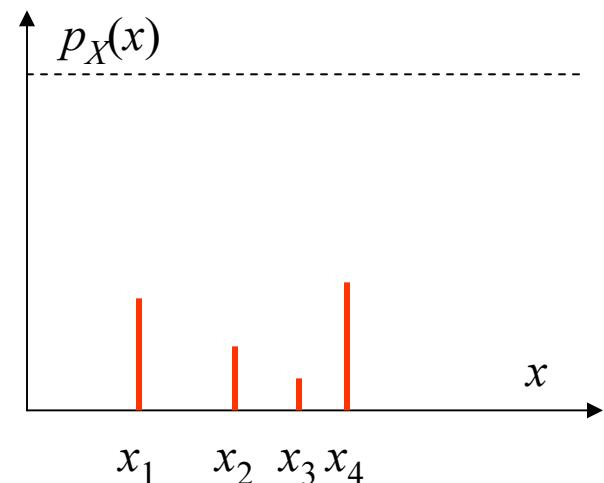
- Definition:** The **probability mass function** (pmf) of X is a function $p_X: \mathcal{R} \rightarrow [0,1]$ defined as follows:

$$p_X(x) := P\{X = x\} = \begin{cases} p_i, & x = x_i \in S_X \\ 0, & x \notin S_X \end{cases}$$

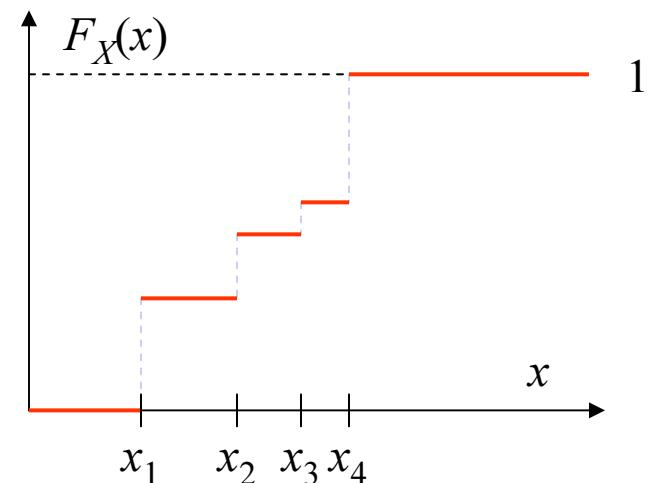
- Cdf is in this case a step function:

$$F_X(x) = P\{X \leq x\} = \sum_{i: x_i \leq x} p_i$$

Example



probability mass function (pmf)



cumulative distribution function (cdf)

$$S_X = \{x_1, x_2, x_3, x_4\}$$

Independence of discrete random variables

- Discrete random variables X and Y are independent if and only if for all $x_i \in S_X$ and $y_j \in S_Y$

$$P\{X = x_i, Y = y_j\} = P\{X = x_i\}P\{Y = y_j\}$$

Expectation

- **Definition:** The **expectation** (mean value) of X is defined by

$$\mu_X := E[X] := \sum_{x \in S_X} P\{X = x\} \cdot x = \sum_{x \in S_X} p_X(x)x = \sum_i p_i x_i$$

- Note 1: The expectation exists only if $\sum_i p_i |x_i| < \infty$
- Note 2: If $\sum_i p_i x_i = \infty$, then we may denote $E[X] = \infty$
- **Properties:**
 - (i) $c \in \mathfrak{R} \Rightarrow E[cX] = cE[X]$
 - (ii) $E[X + Y] = E[X] + E[Y]$
 - (iii) X and Y independent $\Rightarrow E[XY] = E[X]E[Y]$

Variance

- **Definition:** The **variance** of X is defined by

$$\sigma_X^2 := D^2[X] := \text{Var}[X] := E[(X - E[X])^2]$$

- Useful formula (prove!):

$$D^2[X] = E[X^2] - E[X]^2$$

- **Properties:**

- (i) $c \in \mathfrak{R} \Rightarrow D^2[cX] = c^2 D^2[X]$
- (ii) X and Y independent $\Rightarrow D^2[X + Y] = D^2[X] + D^2[Y]$

Covariance

- **Definition:** The **covariance** between X and Y is defined by

$$\sigma_{XY}^2 := \text{Cov}[X, Y] := E[(X - E[X])(Y - E[Y])]$$

- Useful formula (prove!):

$$\text{Cov}[X, Y] = E[XY] - E[X]E[Y]$$

- **Properties:**

- (i) $\text{Cov}[X, X] = \text{Var}[X]$
- (ii) $\text{Cov}[X, Y] = \text{Cov}[Y, X]$
- (iii) $\text{Cov}[X+Y, Z] = \text{Cov}[X, Z] + \text{Cov}[Y, Z]$
- (iv) X and Y independent $\Rightarrow \text{Cov}[X, Y] = 0$

Other distribution related parameters

- **Definition:** The **standard deviation** of X is defined by

$$\sigma_X := D[X] := \sqrt{D^2[X]} = \sqrt{Var[X]}$$

- **Definition:** The **coefficient of variation** of X is defined by

$$c_X := C[X] := \frac{D[X]}{E[X]}$$

- **Definition:** The k th **moment**, $k=1,2,\dots$, of X is defined by

$$\mu_X^{(k)} := E[X^k]$$

Average of IID random variables

- Let X_1, \dots, X_n be independent and identically distributed (**IID**) with mean μ and variance σ^2
- Denote the average (sample mean) as follows:

$$\bar{X}_n := \frac{1}{n} \sum_{i=1}^n X_i$$

- Then (prove!)

$$E[\bar{X}_n] = \mu$$

$$D^2[\bar{X}_n] = \frac{\sigma^2}{n}$$

$$D[\bar{X}_n] = \frac{\sigma}{\sqrt{n}}$$

Law of large numbers (LLN)

- Let X_1, \dots, X_n be independent and identically distributed (**IID**) with mean μ and variance σ^2
- **Weak law of large numbers:** for all $\varepsilon > 0$

$$P\{|\bar{X}_n - \mu| > \varepsilon\} \rightarrow 0$$

- **Strong law of large numbers:** with probability 1

$$\bar{X}_n \rightarrow \mu$$

Contents

- Basic concepts
- Discrete random variables
- Discrete distributions (nbr distributions)
- Continuous random variables
- Continuous distributions (time distributions)
- Other random variables

Bernoulli distribution

$$X \sim \text{Bernoulli}(p), \quad p \in (0,1)$$

- describes a simple random experiment with two possible outcomes: success (1) and failure (0); cf. coin tossing
- success with probability p (and failure with probability $1 - p$)
- Value set: $S_X = \{0,1\}$
- Point probabilities:

$$P\{X = 0\} = 1 - p, \quad P\{X = 1\} = p$$

- Mean value: $E[X] = (1 - p) \cdot 0 + p \cdot 1 = p$
- Second moment: $E[X^2] = (1 - p) \cdot 0^2 + p \cdot 1^2 = p$
- Variance: $D^2[X] = E[X^2] - E[X]^2 = p - p^2 = p(1 - p)$

Binomial distribution

$$X \sim \text{Bin}(n, p), \quad n \in \{1, 2, \dots\}, p \in (0, 1)$$

- number of successes in an independent series of simple random experiments (of Bernoulli type); $X = X_1 + \dots + X_n$ (with $X_i \sim \text{Bernoulli}(p)$)
- n = total number of experiments
- p = probability of success in any single experiment
- Value set: $S_X = \{0, 1, \dots, n\}$
- Point probabilities:

$$\binom{n}{i} = \frac{n!}{i!(n-i)!}$$

$$n! = n \cdot (n-1) \cdots 2 \cdot 1$$

$$P\{X = i\} = \binom{n}{i} p^i (1-p)^{n-i}$$

- Mean value: $E[X] = E[X_1] + \dots + E[X_n] = np$
- Variance: $D^2[X] = D^2[X_1] + \dots + D^2[X_n] = np(1-p)$ (independence!)

Geometric distribution

$$X \sim \text{Geom}(p), \quad p \in (0,1)$$

- number of successes until the first failure in an independent series of simple random experiments (of Bernoulli type)
- p = probability of success in any single experiment
- Value set: $S_X = \{0, 1, \dots\}$
- Point probabilities:

$$P\{X = i\} = p^i (1 - p)$$

- Mean value: $E[X] = \sum_i i p^i (1 - p) = p / (1 - p)$
- Second moment: $E[X^2] = \sum_i i^2 p^i (1 - p) = 2(p / (1 - p))^2 + p / (1 - p)$
- Variance: $D^2[X] = E[X^2] - E[X]^2 = p / (1 - p)^2$

Memoryless property of geometric distribution

- Geometric distribution has so called **memoryless property**:
for all $i, j \in \{0, 1, \dots\}$

$$P\{X \geq i + j \mid X \geq i\} = P\{X \geq j\}$$

- Prove!
 - *Tip:* Prove first that $P\{X \geq i\} = p^i$

Minimum of geometric random variables

- Let $X_1 \sim \text{Geom}(p_1)$ and $X_2 \sim \text{Geom}(p_2)$ be **independent**. Then

$$X^{\min} := \min\{X_1, X_2\} \sim \text{Geom}(p_1 p_2)$$

and

$$P\{X^{\min} = X_i\} = \frac{1 - p_i}{1 - p_1 p_2}, \quad i \in \{1, 2\}$$

- Prove!
 - Tip:* See slide 15

Poisson distribution

$$X \sim \text{Poisson}(a), \quad a > 0$$

- limit of binomial distribution as $n \rightarrow \infty$ and $p \rightarrow 0$ in such a way that $np \rightarrow a$
- Value set: $S_X = \{0, 1, \dots\}$
- Point probabilities:

$$P\{X = i\} = \frac{a^i}{i!} e^{-a}$$

- Mean value: $E[X] = a$
- Second moment: $E[X(X-1)] = a^2 \Rightarrow E[X^2] = a^2 + a$
- Variance: $D^2[X] = E[X^2] - E[X]^2 = a$

Example

- Assume that
 - 200 subscribers are connected to a local exchange
 - each subscriber's characteristic traffic is 0.01 erlang
 - subscribers behave independently
- Then the number of active calls $X \sim \text{Bin}(200, 0.01)$
- Corresponding Poisson-approximation $X \approx \text{Poisson}(2.0)$
- Point probabilities:

	0	1	2	3	4	5
Bin(200,0.01)	.1326	.2679	.2693	.1795	.0893	.0354
Poisson(2.0)	.1353	.2701	.2701	.1804	.0902	.0361

Properties

- (i) **Sum:** Let $X_1 \sim \text{Poisson}(a_1)$ and $X_2 \sim \text{Poisson}(a_2)$ be independent. Then

$$X_1 + X_2 \sim \text{Poisson}(a_1 + a_2)$$

- (ii) **Random sample:** Let $X \sim \text{Poisson}(a)$ denote the number of elements in a set, and Y denote the size of a random sample of this set (each element taken independently with probability p). Then

$$Y \sim \text{Poisson}(pa)$$

- (iii) **Random sorting:** Let X and Y be as in (ii), and $Z = X - Y$. Then Y and Z are **independent** (given that X is unknown) and

$$Z \sim \text{Poisson}((1-p)a)$$

Contents

- Basic concepts
- Discrete random variables
- Discrete distributions (nbr distributions)
- Continuous random variables
- Continuous distributions (time distributions)
- Other random variables

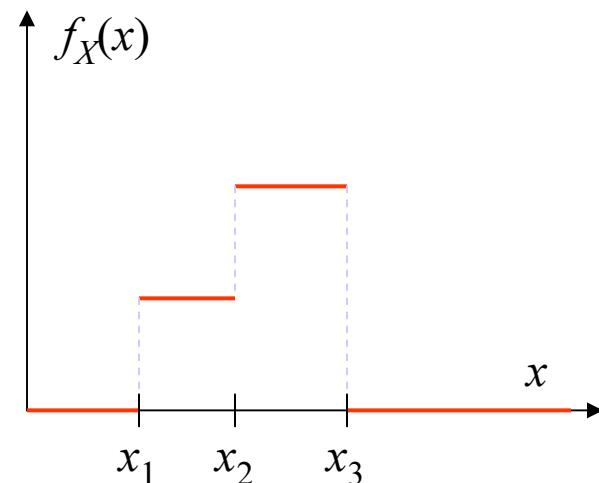
Continuous random variables

- **Definition:** Random variable X is **continuous** if there is an integrable function $f_X: \mathbb{R} \rightarrow \mathbb{R}_+$ such that for all $x \in \mathbb{R}$

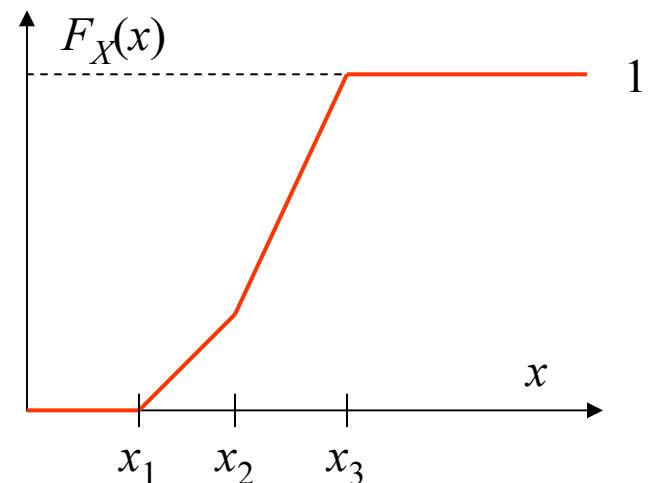
$$F_X(x) := P\{X \leq x\} = \int_{-\infty}^x f_X(y) dy$$

- The function f_X is called the **probability density function** (pdf)
 - The set S_X , where $f_X > 0$, is called the **value set**
- Properties:
 - (i) $P\{X = x\} = 0$ for all $x \in \mathbb{R}$
 - (ii) $P\{a < X < b\} = P\{a \leq X \leq b\} = \int_a^b f_X(x) dx$
 - (iii) $P\{X \in A\} = \int_A f_X(x) dx$
 - (iv) $P\{X \in \mathbb{R}\} = \int_{-\infty}^{\infty} f_X(x) dx = \int_{S_X} f_X(x) dx = 1$

Example



probability density function (pdf)



cumulative distribution function (cdf)

$$S_X = [x_1, x_3]$$

Expectation and other distribution related parameters

- **Definition:** The **expectation** (mean value) of X is defined by

$$\mu_X := E[X] := \int_{-\infty}^{\infty} f_X(x)x \, dx$$

- Note 1: The expectation exists only if $\int_{-\infty}^{\infty} f_X(x)|x| \, dx < \infty$
- Note 2: If $\int_{-\infty}^{\infty} f_X(x)x \, dx = \infty$, then we may denote $E[X] = \infty$
- The expectation has the same properties as in the discrete case (see slide 21)
- The other distribution parameters (variance, covariance,...) are defined just as in the discrete case
 - These parameters have the same properties as in the discrete case (see slides 22-24)

Contents

- Basic concepts
- Discrete random variables
- Discrete distributions (nbr distributions)
- Continuous random variables
- Continuous distributions (time distributions)
- Other random variables

Uniform distribution

$$X \sim U(a, b), \quad a < b$$

- continuous counterpart of “casting a die”
- Value set: $S_X = (a, b)$
- Probability density function (pdf):

$$f_X(x) = \frac{1}{b-a}, \quad x \in (a, b)$$

- Cumulative distribution function (cdf):

$$F_X(x) := P\{X \leq x\} = \frac{x-a}{b-a}, \quad x \in (a, b)$$

- Mean value: $E[X] = \int_a^b x/(b-a) dx = (a+b)/2$
- Second moment: $E[X^2] = \int_a^b x^2/(b-a) dx = (a^2 + ab + b^2)/3$
- Variance: $D^2[X] = E[X^2] - E[X]^2 = (b-a)^2/12$

Exponential distribution

$$X \sim \text{Exp}(\lambda), \quad \lambda > 0$$

- continuous counterpart of geometric distribution (“failure” prob. $\approx \lambda dt$)
- Value set: $S_X = (0, \infty)$
- Probability density function (pdf):

$$f_X(x) = \lambda e^{-\lambda x}, \quad x > 0$$

- Cumulative distribution function (cdf):

$$F_X(x) = P\{X \leq x\} = 1 - e^{-\lambda x}, \quad x > 0$$

- Mean value: $E[X] = \int_0^\infty \lambda x \exp(-\lambda x) dx = 1/\lambda$
- Second moment: $E[X^2] = \int_0^\infty \lambda x^2 \exp(-\lambda x) dx = 2/\lambda^2$
- Variance: $D^2[X] = E[X^2] - E[X]^2 = 1/\lambda^2$

Memoryless property of exponential distribution

- Exponential distribution has so called **memoryless property**: for all $x, y \in (0, \infty)$

$$P\{X > x + y \mid X > x\} = P\{X > y\}$$

- Prove!
 - *Tip:* Prove first that $P\{X > x\} = e^{-\lambda x}$
- Application:
 - Assume that the call holding time is exponentially distributed with mean h (min).
 - Consider a call that has already lasted for x minutes.
Due to memoryless property,
this gives **no information about** the length of the **remaining holding time**:
it is distributed as the original holding time and, on average, lasts still h minutes!

Minimum of exponential random variables

- Let $X_1 \sim \text{Exp}(\lambda_1)$ and $X_2 \sim \text{Exp}(\lambda_2)$ be **independent**. Then

$$X^{\min} := \min\{X_1, X_2\} \sim \text{Exp}(\lambda_1 + \lambda_2)$$

and

$$P\{X^{\min} = X_i\} = \frac{\lambda_i}{\lambda_1 + \lambda_2}, \quad i \in \{1,2\}$$

- Prove!
 - Tip:* See slide 15

Standard normal (Gaussian) distribution

$$X \sim \mathbf{N}(0,1)$$

- limit of the “normalized” sum of IID r.v.s with mean 0 and variance 1 (cf. slide 48)
- Value set: $S_X = (-\infty, \infty)$
- Probability density function (pdf):

$$f_X(x) = \varphi(x) := \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}x^2}$$

- Cumulative distribution function (cdf):

$$F_X(x) := P\{X \leq x\} = \Phi(x) := \int_{-\infty}^x \varphi(y) dy$$

- Mean value: $E[X] = 0$ (symmetric pdf)
- Variance: $D^2[X] = 1$

Normal (Gaussian) distribution

$$X \sim N(\mu, \sigma^2), \quad \mu \in \mathbb{R}, \quad \sigma > 0$$

- if $(X - \mu)/\sigma \sim N(0,1)$
- Value set: $S_X = (-\infty, \infty)$
- Probability density function (pdf):

$$f_X(x) = F_X'(x) = \frac{1}{\sigma} \varphi\left(\frac{x-\mu}{\sigma}\right)$$

- Cumulative distribution function (cdf):

$$F_X(x) := P\{X \leq x\} = P\left\{\frac{X-\mu}{\sigma} \leq \frac{x-\mu}{\sigma}\right\} = \Phi\left(\frac{x-\mu}{\sigma}\right)$$

- Mean value: $E[X] = \mu + \sigma E[(X - \mu)/\sigma] = \mu$ (symmetric pdf around μ)
- Variance: $D^2[X] = \sigma^2 D^2[(X - \mu)/\sigma] = \sigma^2$

Properties of the normal distribution

- (i) **Linear transformation**: Let $X \sim N(\mu, \sigma^2)$ and $\alpha, \beta \in \mathbb{R}$. Then

$$Y := \alpha X + \beta \sim N(\alpha\mu + \beta, \alpha^2\sigma^2)$$

- (ii) **Sum**: Let $X_1 \sim N(\mu_1, \sigma_1^2)$ and $X_2 \sim N(\mu_2, \sigma_2^2)$ be **independent**. Then

$$X_1 + X_2 \sim N(\mu_1 + \mu_2, \sigma_1^2 + \sigma_2^2)$$

- (iii) **Sample mean**: Let $X_i \sim N(\mu, \sigma^2)$, $i = 1, \dots, n$, be independent and identically distributed (IID). Then

$$\bar{X}_n := \frac{1}{n} \sum_{i=1}^n X_i \sim N\left(\mu, \frac{1}{n}\sigma^2\right)$$

Central limit theorem (CLT)

- Let X_1, \dots, X_n be **independent and identically distributed (IID)** with mean μ and variance σ^2 (and the third moment exists)
- **Central limit theorem:**

$$\frac{1}{\sigma/\sqrt{n}}(\bar{X}_n - \mu) \xrightarrow{\text{i.d.}} N(0,1)$$

- It follows that

$$\bar{X}_n \approx N\left(\mu, \frac{1}{n}\sigma^2\right)$$

Contents

- Basic concepts
- Discrete random variables
- Discrete distributions (nbr distributions)
- Continuous random variables
- Continuous distributions (time distributions)
- Other random variables

Other random variables

- In addition to discrete and continuous random variables, there are so called **mixed** random variables
 - containing some discrete as well as continuous portions
- Example:
 - The customer waiting time W in an M/M/1 queue has an **atom** at zero ($P\{W = 0\} = 1 - \rho > 0$) but otherwise the distribution is continuous

