

Math 244 - Linear Algebra

Chapter 7: Diagonalizable Matrices

Dr. Malik Talbi
King Saud University, Mathematic's Department

December 2, 2025

Definition of Eigenvectors and Eigenvalues

Definition

If A is an $n \times n$ matrix, then a nonzero vector X in \mathbb{R}^n is called an **eigenvector** of A (or of the matrix operator T_A) if Ax is a scalar multiple of x ; that is, $Ax = \lambda x$ for some scalar λ . The scalar λ is called an **eigenvalue** of A (or of T_A), and x is said to be an **eigenvector corresponding to λ** .

Examples:

- ① $\begin{pmatrix} 1 \\ 2 \end{pmatrix}$ is an eigenvector of $\begin{pmatrix} 3 & 0 \\ 8 & -1 \end{pmatrix}$ corresponding to 3.
- ② $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$ is an eigenvector of $\begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix}$ corresponding to 0.
- ③ $\begin{pmatrix} 1 \\ 2 \\ -1 \end{pmatrix}$ is an eigenvector of $\begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & -1 \\ 1 & -1 & 1 \end{pmatrix}$ corresponding to 2.

How to find Eigenvalues of a matrix

Theorem

If A is an $n \times n$ matrix, then λ is an eigenvalue of A if and only if it satisfies the equation $\det(A - \lambda I) = 0$. This is called the characteristic equation of A .

Examples:

- For $A = \begin{pmatrix} 3 & 0 \\ 8 & -1 \end{pmatrix}$, we have $\det(A - \lambda I) = (3 - \lambda)(-1 - \lambda)$.
the characteristic equation is then $(\lambda + 1)(\lambda - 3) = 0$ and the eigenvalues are $\lambda = -1, 3$.
- For $A = \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix}$, we have
 $\det(A - \lambda I) = (1 - \lambda)^2 - 1 = \lambda(\lambda - 2)$. the characteristic equation is then $\lambda(\lambda - 2) = 0$ and the eigenvalues are $\lambda = 0, 2$.

How to find Eigenvectors of a matrix

Remark

If λ is an eigenvalue of a square matrix A , to find the corresponding eigenvectors, we solve the homogeneous linear system given by the matricial equation $(A - \lambda I)X = 0$.

Examples: For the matrix $A = \begin{pmatrix} 3 & 0 \\ 8 & -1 \end{pmatrix}$,

- 1 For the eigenvalue $\lambda = -1$, we solve the system:

$$\begin{cases} 4x = 0 \\ 8x = 0 \end{cases}, \text{ which is equivalent to } x = 0. \text{ The eigenvectors}$$

$$\text{are } X = t \begin{pmatrix} 0 \\ 1 \end{pmatrix}, t \in \mathbb{R}.$$

- 2 For the eigenvalue $\lambda = 3$, we solve the system:

$$\begin{cases} 0 = 0 \\ 8x - 4y = 0 \end{cases}, \text{ which is equivalent to } y = 2x. \text{ The}$$

$$\text{eigenvectors are } X = t \begin{pmatrix} 1 \\ 2 \end{pmatrix}, t \in \mathbb{R}.$$

The Eigenspace of a matrix corresponding to a given eigenvalue

Theorem

Let λ be an eigenvalue of an $n \times n$ matrix A . The set

$$E_\lambda = \{X \in \mathcal{M}_{n,1}(\mathbb{R}) \mid AX = \lambda X\}$$

of the corresponding eigenvectors, is a subspace of $\mathcal{M}_{n,1}(\mathbb{R})$ and satisfies $1 \leq \dim E_\lambda \leq m_\lambda$, where m_λ is the multiplicity of λ in the characteristic equation of A .

E_λ is called the eigenspace of the matrix A corresponding to the eigenvalue λ , m_λ the algebraic multiplicity of λ and $\dim E_\lambda$ its geometric multiplicity.

The Eigenspace of a matrix corresponding to a given eigenvalue

Examples:

- ① For $A = \begin{pmatrix} 3 & 0 \\ 1 & 3 \end{pmatrix}$, the characteristic equation is $(3 - \lambda)^2 = 0$.

It has a unique eigenvalue $\lambda = 3$ with algebraic multiplicity $m_3 = 2$.

The corresponding eigenspace is the solution set of the

$$\text{equation } \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \text{ and therefore}$$

$E_3 = \left\{ t \begin{pmatrix} 0 \\ 1 \end{pmatrix} \mid t \in \mathbb{R} \right\}$. The geometric multiplicity of 3 is $\dim E_3 = 1$.

The Eigenspace of a matrix corresponding to a given eigenvalue

② For $A = \begin{pmatrix} 3 & 0 & 0 \\ 0 & 3 & 0 \\ 1 & 1 & 1 \end{pmatrix}$, the characteristic equation is

$(3 - \lambda)^2(1 - \lambda) = 0$. It has two eigenvalues: $\lambda = 3, 1$ with algebraic multiplicities $m_3 = 2$ and $m_1 = 1$.

The eigenspace corresponding to $\lambda = 3$ is the solution set of

the equation $\begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 1 & 1 & -2 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$ and therefore

$E_3 = \left\{ s \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix} + t \begin{pmatrix} 2 \\ 0 \\ 1 \end{pmatrix} \mid s, t \in \mathbb{R} \right\}$. The geometric multiplicity of 3 is $\dim E_3 = 2$.

Diagonalizable matrices

Theorem

Let X_1, X_2, \dots, X_k be eigenvectors corresponding to distinct eigenvalues of a square matrix A . The family $\{X_1, X_2, \dots, X_k\}$ is linearly independent.

Definition

We say that an $n \times n$ matrix A is a diagonalizable if the space $\mathcal{M}_{n,1}$ has a basis of eigenvectors of A .

Theorem

If an $n \times n$ matrix has n different eigenvalues, it is diagonalizable.

Theorem

Let A be an $n \times n$ matrix. The following statements are equivalent.

- 1 A is diagonalizable.
- 2 The characteristic equation of A has n zeros counted with their multiplicities and each eigenvalue of A has equal geometric and algebraic multiplicities.
- 3 There exist an invertible matrix P and a diagonal matrix D such that $A = PDP^{-1}$.

Proof: (1) \Leftrightarrow (3) If C is the standard basis of $\mathcal{M}_{n,1}(\mathbb{R})$ and B a basis of eigenvectors of A , then take $P = P_{B \leftarrow C}$. The matrix $P^{-1}AP$ is diagonal with entries the eigenvalues of A corresponding to the eigenvectors in B . For the converse, the columns of P are eigenvectors of A and they form a basis of $\mathcal{M}_{n,1}(\mathbb{R})$.

Diagonalizable matrices

Proof: (2) \Rightarrow (1) Consider for each eigenspace E_λ a basis. Put all these bases of eigenspaces together to form a basis of eigenvectors of $\mathcal{M}_{n,1}(\mathbb{R})$ since

$$\dim E_{\lambda_1} + \dim E_{\lambda_2} + \cdots + \dim E_{\lambda_k} = m_{\lambda_1} + m_{\lambda_2} + \cdots + m_{\lambda_k} = n.$$

Remark

If $A = PDP^{-1}$, then $A^m = PD^mP^{-1}$ for any $m \in \mathbb{Z}$. In particular, any power of a diagonalizable matrix is diagonalizable.

Theorem

Any symmetric matrix is diagonalizable and has an orthonormal basis of eigenvectors.

The matrix $\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$ is skew-symmetric and not diagonalizable since its characteristic equation is $\lambda^2 + 1 = 0$ which has no real zeros.